×

Computing extremal eigenvalues for three-dimensional photonic crystals with wave vectors near the Brillouin zone center. (English) Zbl 1271.65065

The authors consider a matrix eigenvalue problem \(Ax=\lambda Bx\) with \(A\) positive semi-definite and \(B\) positive definite and diagonal, arising in the finite difference solution of Maxwell’s equations. The problem studied arises in the study of wave vectors close to the centre of the Brillouin zone of a cubic photonic crystal (a periodic dielectric medium). This problem has many zero eigenvalues, a couple of very small non-zero eigenvalues, and several much larger eigenvalues. The authors determine the number of zero eigenvalues and analyze the structure of the null spaces. They compare two methods (the hybrid Jacobi-Davidson method and the shift-and-invert Krylov-Schur method) for computing the small non-zero eigenvalues, and numerically test how performance is affected by the choice of shift values, condition numbers, and initial vectors.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
35Q61 Maxwell equations
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
65F08 Preconditioners for iterative methods
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

TRLan; SLEPc; JDQR; JDQZ
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Arbenz, P., A comparison of factorization-free eigensolvers with application to cavity resonators, No. 2331, 295-304 (2002), Berlin · Zbl 1056.65031
[2] Arbenz, P., Geus, R.: A comparison of solvers for large eigenvalue problems occurring in the design of resonant cavities. Numer. Linear Algebra Appl. 6, 3-16 (1999) · Zbl 0982.65039 · doi:10.1002/(SICI)1099-1506(199901/02)6:1<3::AID-NLA142>3.0.CO;2-I
[3] Arbenz, P., Geus, R.: Multilevel preconditioned iterative eigensolvers for maxwell eigenvalue problems. Appl. Numer. Math. 54(2), 107-121 (2005) · Zbl 1127.65021 · doi:10.1016/j.apnum.2004.09.026
[4] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000) · Zbl 0965.65058 · doi:10.1137/1.9780898719581
[5] Bossavit, A.; Whiteman, J. (ed.), Mixed finite elements and the complex of Whitney forms, 137-144 (1988), San Diego
[6] Bossavit, A., Vérité, J.-C.: A mixed FEM-BIEM method to solve 3-D eddy-current problems. IEEE Trans. Magn. 18, 431-435 (1982) · doi:10.1109/TMAG.1982.1061847
[7] Chatterjee, A., Kempel, L.C., Volakis, J.L.: Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications. IEEE Press, Los Alamitos (1998) · Zbl 0966.78504
[8] Chen, Z., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542-1570 (2000) · Zbl 0964.78017 · doi:10.1137/S0036142998349977
[9] Chern, R.L., Chung Chang, C., Chang, C.-C., Hwang, R.R.: Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration. Phys. Rev. E 68, 26704 (2003) · doi:10.1103/PhysRevE.68.026704
[10] Chern, R.L., Chung Chang, C., Chang, C.-C., Hwang, R.R.: Numerical study of three-dimensional photonic crystals with large band gaps. J. Phys. Soc. Jpn. 73, 727-737 (2004) · Zbl 1120.82309 · doi:10.1143/JPSJ.73.727
[11] Chung, E., Du, Q., Zou, J.: Convergence analysis of a finite volume method for Maxwell’s equations in nonhomogeneous media. SIAM J. Numer. Anal. 41, 37-63 (2003) · Zbl 1067.78018 · doi:10.1137/S0036142901398453
[12] Chung, T., Zou, J.: A finite volume method for Maxwell’s equations with discontinuous physical coefficients. Int. J. Appl. Math. 7, 201-223 (2001) · Zbl 1028.78011
[13] Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 94-125 (1998) · Zbl 0924.65027 · doi:10.1137/S1064827596300073
[14] Hano, M.: Finite-element analysis of dielectric-loaded waveguides. IEEE Trans. Microw. Theory Tech. 32, 1275-1279 (1984) · doi:10.1109/TMTT.1984.1132837
[15] Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc users manual. Technical Report DSIC-II/24/02—Revision 2.3.2, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2006) · Zbl 1003.65045
[16] Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 351-362 (2005) · Zbl 1136.65315 · doi:10.1145/1089014.1089019
[17] Hiptmair, R., Neymeyr, K.: Multilevel method for mixed eigenproblems. SIAM J. Sci. Comput. 23, 2141 (2002) · Zbl 1013.65120 · doi:10.1137/S1064827501385001
[18] Hoang, V., Plum, M., Wieners, C.: A computer-assisted proof for photonic band gaps. Z. Angew. Math. Phys. 60(6), 1035-1052 (2009) · Zbl 1180.78017 · doi:10.1007/s00033-008-8021-2
[19] Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh-Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15, 35-54 (2008) · Zbl 1212.65150 · doi:10.1002/nla.562
[20] Huang, T.-M., Chang, W.-J., Huang, Y.-L., Lin, W.-W., Wang, W.-C., Wang, W.: Preconditioning bandgap eigenvalue problems in three dimensional photonic crystals simulations. J. Comput. Phys. 229(23), 8684-8703 (2010) · Zbl 1220.78117 · doi:10.1016/j.jcp.2010.08.003
[21] Huang, T.-M., Huang, Y.-L., Lin, W.-W., Wang, W.-C.: A null space free Jacobi-Davidson iteration for Maxwell’s operator. NCTS Preprints in Mathematics (2009-7-004), National Tsing Hua University, Hsinchu, Taiwan (2009)
[22] Hyman, J.M., Shashkov, M.: Mimetic discretizations of Maxwell’s equations. J. Comput. Phys. 151, 881-909 (1999) · Zbl 0956.78015 · doi:10.1006/jcph.1999.6225
[23] Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002) · Zbl 1001.78001
[24] Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals. Solid State Commun. 102(2-3), 165-173 (1997) · doi:10.1016/S0038-1098(96)00716-8
[25] Joannopoulos, J.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton Univ. Press, Princeton (2008) · Zbl 1144.78303
[26] John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486-2489 (1987) · doi:10.1103/PhysRevLett.58.2486
[27] Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005) · Zbl 0052.45506
[28] Madsen, N.: Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids. J. Comput. Phys. 119, 34-45 (1995) · Zbl 0822.65107 · doi:10.1006/jcph.1995.1114
[29] Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393-412 (1994) · Zbl 0805.65121 · doi:10.1137/0731021
[30] Mur, G., de Hoop, A.: A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans. Magn. 21, 2188-2191 (1985) · doi:10.1109/TMAG.1985.1064256
[31] Nédélec, J.-C.: Mixed finite elements in R3. Numer. Math. 35(3), 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[32] Nédélec, J.-C.: A new class of mixed finite elements in R3. Numer. Math. 50, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[33] Nicolaides, R.A., Wang, D.-Q.: Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions. Math. Comput. 67(223), 947-963 (1998) · Zbl 0907.65116 · doi:10.1090/S0025-5718-98-00971-5
[34] Prather, D.W., Shi, S., Sharkawy, A., Murakowski, J., Schneider, G.: Photonic Crystals: Theory, Applications, and Fabrication. Wiley, New York (2009)
[35] Raviart, P. A.; Thomas, J. M., A mixed finite element method for second order elliptic problems, No. 606 (1977), Berlin · Zbl 0362.65089
[36] Simoncini, V.: Algebraic formulations for the solution of the nullspace-free eigenvalue problem using the inexact shift-and-invert Lanczos method. Numer. Linear Algebra Appl. 10, 357-375 (2003) · Zbl 1071.65517 · doi:10.1002/nla.307
[37] Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numer. Math. 36, 595-633 (1996) · Zbl 0861.65035 · doi:10.1007/BF01731936
[38] Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401-425 (1996) · Zbl 0860.65023 · doi:10.1137/S0895479894270427
[39] Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601-614 (2001) · Zbl 1003.65045 · doi:10.1137/S0895479800371529
[40] Stewart, G.W.: Addendum to “A Krylov-Schur algorithm for large eigenproblems”. SIAM J. Matrix Anal. Appl. 24, 599-601 (2002) · Zbl 1003.65045 · doi:10.1137/S0895479802403150
[41] Whitney, H.: Geometric Integration Theory. Princeton Univ. Press, Princeton (1957) · Zbl 0083.28204
[42] Wu, K., Canning, A., Simon, H.D., Wang, L.W.: Thick-restart Lanczos method for electronic structure calculations *1. J. Comput. Phys. 154(1), 156-173 (1999) · Zbl 0963.82048 · doi:10.1006/jcph.1999.6306
[43] Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22(2), 602-616 (2001) · Zbl 0969.65030 · doi:10.1137/S0895479898334605
[44] Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059-2062 (1987) · doi:10.1103/PhysRevLett.58.2059
[45] Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302-307 (1966) · Zbl 1155.78304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.