×

ODE analysis of biological systems. (English) Zbl 1383.92033

Bernardo, Marco (ed.) et al., Formal methods for dynamical systems. 13th international school on formal methods for the design of computer, communication, and software systems, SFM 2013, Bertinoro, Italy, June 17–22, 2013. Advanced lectures. Berlin: Springer (ISBN 978-3-642-38873-6/pbk). Lecture Notes in Computer Science 7938, 29-62 (2013).
Summary: This chapter aims to introduce some of the basics of modeling with ODEs in biology. We focus on computational, numerical techniques, rather than on symbolic ones. We restrict our attention to reaction-based models, where the biological interactions are mechanistically described in terms of reactions, reactants and products. We discuss how to build the ODE model associated to a reaction-based model; how to fit it to experimental data and estimate the quality of its fit; how to calculate its steady state(s), mass conservation relations, and its sensitivity coefficients. We apply some of these techniques to a model for the heat shock response in eukaryotes.
For the entire collection see [Zbl 1266.68008].

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
92D25 Population dynamics (general)

Software:

COPASI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abravaya, K., Phillips, B., Morimoto, R.I.: Attenuation of the heat shock response in hela cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes & Development 5(11), 2117–2127 (1991) · doi:10.1101/gad.5.11.2117
[2] Ali, M.M., Storey, C., Törn, A.: Application of stochastic global optimization algorithms to practical problems. Journal of Optimization Theory and Applications 95(3), 545–563 (1997) · Zbl 0897.90191 · doi:10.1023/A:1022617804737
[3] Azimi, S., Gratie, D.-E., Iancu, B., Petre, I.: Three approaches to quantitative model refinement with applications to the heat shock response. Technical report, Turku Centre for Computer Science (2013)
[4] Baker, S.M., Schallau, K., Junker, B.H.: Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. Journal of Integrative Bioinformatics 7(3), 1–9 (2010)
[5] Ballew, R.M., Sabelko, J., Gruebele, M.: Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proceedings of the National Academy of Sciences 93(12), 5759–5764 (1996) · doi:10.1073/pnas.93.12.5759
[6] Boender, G., Romeijn, E.: Stochastic methods. In: Handbook of Global Optimization: nonconvex optimization and its applications, pp. 829–869. Kluwer Academic Publishers (1995) · Zbl 0833.90100 · doi:10.1007/978-1-4615-2025-2_15
[7] Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochemical Journal 19(2), 338–339 (1925) · doi:10.1042/bj0190338
[8] Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of erbb signaling pathways as revealed by a mass action model trained against dynamic data. Molecular Systems Biology 5, 239 (2009)
[9] Ciobanu, G., Rozenberg, G. (eds.): Modeling in Molecular Biology. Springer (2004) · Zbl 1064.92509
[10] Czeizler, E., Rogojin, V., Petre, I.: The phosphorylation of the heat shock factor as a modulator for the heat shock response. IEEE-ACM Trans. Comp. Biol. Bioinf. 9(5), 1326–1337 (2012) · doi:10.1109/TCBB.2012.66
[11] Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill, New York (1988) · Zbl 0674.92001
[12] Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25, 1239–1249 (2007) · doi:10.1038/nbt1356
[13] Gessel, I.M., Stanley, R.P.: Algebraic enumeration. Handbook of Combinatorics 2, 1021–1061 (1995) · Zbl 0853.05002
[14] Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976) · doi:10.1016/0021-9991(76)90041-3
[15] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977) · doi:10.1021/j100540a008
[16] Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications 188(1), 404–425 (1992) · doi:10.1016/0378-4371(92)90283-V
[17] Giordano, F., Weir, M., Fox, W.: A first course in mathematical modeling, 3rd edn. Thomson (2003)
[18] Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological systems. Proceedings of the National Academy of Sciences 78(11), 6840–6844 (1981) · doi:10.1073/pnas.78.11.6840
[19] Grossmann, I.E.: Global optimization in engineering design. Kluwer Academic Publishers (1996) · Zbl 0869.00021 · doi:10.1007/978-1-4757-5331-8
[20] Guldberg, C.M., Waage, P.: Studies concerning affinity. CM Forhandlinger: Videnskabs-Selskabet i Christiana 35, 92–111 (1864)
[21] Guldberg, C.M., Waage, P.: Etudes sur les affinités chimiques. Brøgger & Christie (1867)
[22] Haldane, J.B.S.: Enzymes (1930, 1965)
[23] Harmer, R.: Rule-based modelling and tunable resolution. EPTCS 9, 65–72 (2009) · doi:10.4204/EPTCS.9.8
[24] Heinrich, R., Schuster, S.: The regulation of cellular systems, vol. 416. Chapman & Hall, New York (1996) · Zbl 0895.92013 · doi:10.1007/978-1-4613-1161-4
[25] Heinrich, R., Schuster, S.: The modelling of metabolic systems. structure, control and optimality. Biosystems 47(1), 61–77 (1998) · doi:10.1016/S0303-2647(98)00013-6
[26] Helton, J.C., Davis, F.J.: Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk Analysis 22(3), 591–622 (2002) · doi:10.1111/0272-4332.00041
[27] Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety 81, 23–69 (2003) · doi:10.1016/S0951-8320(03)00058-9
[28] Henri, V.: Lois générales de l’action des diastases. Librairie Scientifique A. Hermann (1903)
[29] Hill, A.V.: A new mathematical treatment of changes of ionic concentration in muscle and nerve under the action of electric currents, with a theory as to their mode of excitation. The Journal of Physiology 40(3), 190–224 (1910) · doi:10.1113/jphysiol.1910.sp001366
[30] Holmberg, C.I., Tran, S.E.F., Eriksson, J.E., Sistonen, L.: Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences 27(12), 619–627 (2002) · doi:10.1016/S0968-0004(02)02207-7
[31] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: Copasi-a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006) · doi:10.1093/bioinformatics/btl485
[32] Hoppenstaedt, F.C., Peskin, C.S.: Modeling and Simulation in Medicine and the Life Sciences. Springer, New York (2002) · doi:10.1007/978-0-387-21571-6
[33] Horst, R., Tuy, H.: Global optimization: Deterministic approaches. Springer, Berlin (1990) · Zbl 0704.90057 · doi:10.1007/978-3-662-02598-7
[34] Iancu, B., Czeizler, E., Czeizler, E., Petre, I.: Quantitative refinement of reaction models. International Journal of Unconventional Computing (page to appear, 2013) · Zbl 1283.92038
[35] Jones, C.M., Henry, E.R., Hu, Y., Chan, C.-K., Luck, S.D., Bhuyan, A., Roder, H., Hofrichter, J., Eaton, W.A.: Fast events in protein folding initiated by nanosecond laser photolysis. Proceedings of the National Academy of Sciences 90(24), 11860–11864 (1993) · doi:10.1073/pnas.90.24.11860
[36] Kline, M.P., Morimoto, R.I.: Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Molecular and Cellular Biology 17(4), 2107–2115 (1997) · doi:10.1128/MCB.17.4.2107
[37] Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems biology in practice: concepts, implementation and application. Wiley-Vch (2005) · doi:10.1002/3527603603
[38] Kühnel, M., Mayorga, L.S., Dandekar, T., Thakar, J., Schwarz, R., Anes, E., Griffiths, G., Reich, J.: Modelling phagosomal lipid networks that regulate actin assembly. BMC Systems Biology 2, 107–121 (2008) · doi:10.1186/1752-0509-2-107
[39] Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins Company (1925) · JFM 51.0416.06
[40] Malthus, T.R.: An Essay on the Principle of Population. 1798
[41] McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979) · Zbl 0415.62011
[42] Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998) · doi:10.1093/bioinformatics/14.10.869
[43] Menten, L., Michaelis, M.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)
[44] Miller, W.G., Alberty, R.A.: Kinetics of the reversible michaelis-menten mechanism and the applicability of the steady-state approximation. Journal of the American Chemical Society 80(19), 5146–5151 (1958) · doi:10.1021/ja01552a034
[45] Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Research 13(11), 2467–2474 (2003) · doi:10.1101/gr.1262503
[46] Murphy, E., Danos, V., Féret, J., Krivine, J., Harmer, R.: Rule-based modeling and model refinement. Elements of Computational Systems Biology, 83–114 (2009)
[47] Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002) · Zbl 1006.92001
[48] Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2002)
[49] Nelson, D.L., Cox, M.M.: Lehninger principles of biochemistry. Worth Publishers (2000)
[50] Oberguggenberger, M., King, J., Schmelzer, B.: Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. International Journal of Approximate Reasoning 50, 680–693 (2009) · Zbl 05690159 · doi:10.1016/j.ijar.2008.09.004
[51] Orth, J.D., Thiele, I., Palsson, B.: What is flux balance analysis? Nature Biotechnology 28, 245–248 (2010) · doi:10.1038/nbt.1614
[52] Peper, A., Grimbergen, C.A., Spaan, J.A.E., Souren, J.E.M., Van Wijk, R.: A mathematical model of the hsp70 regulation in the cell. International Journal of Hyperthermia 14(1), 97–124 (1998) · doi:10.3109/02656739809018218
[53] Petre, I., Mizera, A., Hyder, C.L., Meinander, A., Mikhailov, A., Morimoto, R.I., Sistonen, L., Eriksson, J.E., Back, R.-J.: A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing 10(1), 595–612 (2011) · doi:10.1007/s11047-010-9216-y
[54] Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Annual Review of Physical Chemistry 34(1), 419–461 (1983) · doi:10.1146/annurev.pc.34.100183.002223
[55] Rieger, T.R., Morimoto, R.I., Hatzimanikatis, V.: Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the hsp70 promoter. Biophysical Journal 88(3), 1646 (2005) · doi:10.1529/biophysj.104.055301
[56] Rubinow, S.I.: Introduction to Mathematical Biology. John Wiley, New York (1975) · Zbl 0314.92001
[57] Stewart, W.J.: Probability, Markov chains, queues, and simulation. The mathematical basis of performance modeling. Princeton University Press, Princeton (2009) · Zbl 1176.60003
[58] Taubes, C.: Modeilng Differential Equations in Biology. Prentice Hall, Upper Saddle River (2001)
[59] Turányi, T.: Sensitivity analysis of complex kinetic systems. tools and applications. Journal of Mathematical Chemistry 5(3), 203–248 (1990) · doi:10.1007/BF01166355
[60] Volterra, V.: Animal ecology. In: Chapman, R.N. (ed.), pp. 409–448. McGraw-Hill, New York (1926)
[61] Wilkinson, D.J.: Stochastic modelling for systems biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series (2006) · Zbl 1099.92004
[62] Zi, Z.: Sensitivity analysis approaches applied to systems biology models. Systems Biology, IET 5(6), 336–346 (2011) · doi:10.1049/iet-syb.2011.0015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.