×

Model reduction of chemical reaction systems using elimination. (English) Zbl 1270.92025

Summary: There exist different schemes of model reduction for parametric ordinary differential systems arising from chemical reaction systems. We focus on some schemes which rely on quasi-steady state approximations. We show that these schemes can be formulated by means of differential and algebraic elimination. Our formulation is simpler than the classical ones. It permitted us to obtain an approximation of the basic enzymatic reaction system which is different from those of Henri-Michaëlis-Menten and Briggs-Haldane.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34C60 Qualitative investigation and simulation of ordinary differential equation models
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Bellon, B.: Biochimie structurale: introduction à la cinétique enzymatique (2006) (in French). http://www.up.univ-mrs.fr/wabim/d_agora/d_biochimie/cinetique.pdf
[2] Bennet M.R., Volfson D., Tsimring L., Hasty J.: Transient dynamics of genetic regulatory networks. Biophys. J. 92, 3501–3512 (2007)
[3] Boulier, F.: Réécriture algébrique dans les systèmes d’équations différentielles polynomiales en vue d’applications dans les Sciences du Vivant, May 2006. Mémoire d’habilitation à diriger des recherches. Université Lille I, LIFL, 59655 Villeneuve d’Ascq, France. http://tel.archives-ouvertes.fr/tel-00137153
[4] Boulier, F.: Differential Elimination and Biological Modelling. Radon Series on Computational and Applied Mathematics (Gröbner Bases in Symbolic Analysis) 2, pp. 111–139 (2007). http://hal.archives-ouvertes.fr/hal-00139364 · Zbl 1131.92002
[5] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC’95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM Press, New York (1995). http://hal.archives-ouvertes.fr/hal-00138020 · Zbl 0911.13011
[6] Boulier F., Lazard D., Ollivier F., Petitot M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput 20(1), 73–121 (2009) (1997 Techrep. IT306 of the LIFL) · Zbl 1185.12003
[7] Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Horimoto, K., et al. (eds.) Proceedings of Algebraic Biology 2008 No. 5147 in LNCS, pp. 56–64. Springer, Berlin (2008) · Zbl 1171.92317
[8] Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, K.H.H., Kutsia, T. (eds.) Proceedings of Algebraic Biology, LNCS, vol. 4545, pp. 66–80. Springer, Berlin (2007). http://hal.archives-ouvertes.fr/hal-00139667 · Zbl 1127.92306
[9] Boulier, F., Lemaire, F.: Computing canonical representatives of regular differential ideals. In: ISSAC’00 Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 38–47. ACM Press, New York (2000). http://hal.archives-ouvertes.fr/hal-00139177 · Zbl 1326.68344
[10] Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains. Math. Comput. Sci. 4(2), 185–201 (2010) doi: 10.1007/s11786-010-0060-3 · Zbl 1218.68202
[11] Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925). Available on http://www.biochemj.org/bj/019/0338/bj0190338_browse.htm
[12] Crampin E.J., Schnell S., Mac Sharry P.E.: Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog. Biophys. Mol. Biol. 86, 77–112 (2004)
[13] Hairer E., Wanner G.: Solving ordinary differential equations II Stiff and Differential-Algebraic Problems 2nd edn Springer Series in Computational Mathematics vol 14. Springer, New York (1996) · Zbl 0859.65067
[14] Henri V.: Lois générales de l’Action des Diastases. Hermann, Paris (1903)
[15] Horn F., Jackson R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)
[16] Hubert É.: Factorization free decomposition algorithms in differential algebra. J. Symb. Comput. 29(4–5), 641–662 (2000) · Zbl 0984.12004
[17] Kell D.B., Knowles J.D.: The role of modeling in systems biology. In: Szallasi, Z., Stelling, J., Periwal, V. (eds) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 3–18. The MIT Press, Cambridge (2006)
[18] Klamt S., Stelling J.: Stoichiometric and constraint-based modeling. In: Szallasi, Z., Stelling, J., Periwal, V. (eds) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 73–96. The MIT Press, Cambridge (2006)
[19] Kolchin E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973) · Zbl 0264.12102
[20] Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE 10. In: Kotsireas, I.S. (ed.) The MAPLE Conference, pp. 355–368 (2005) · Zbl 1114.68628
[21] Michaelis, L., Menten M.: Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1973) (Partial translation in english on http://web.lemoyne.edu/\(\sim\)giunta/menten.html )
[22] Morant, P.-E., Vandermoere, C., Parent, B., Lemaire, F., Corellou, F., Schwartz, C., Bouget, F.-Y., Lefranc, M.: Oscillateurs génétiques simples. Applications à l’horloge circadienne d’une algue unicellulaire. In: Proceedings of the Rencontre du non linéaire Paris (2007). http://nonlineaire.univ-lille1.fr
[23] Niu, W.: Qualitative Analysis of Biological Systems Using Algebraic Methods. PhD thesis, Université Paris VI, Paris, June 2011.
[24] Okino M.S., Mavrovouniotis M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 98(2), 391–408 (1998)
[25] Ritt J.F.: Differential Algebra. Dover Publications Inc., NewYork (1950) · Zbl 0037.18402
[26] Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries. In: Anai, K.H.H., Kutsia, T. (eds.) Proceedings of Algebraic Biology 2007, LNCS, vol. 4545, pp. 277–291 (2007) · Zbl 1333.34055
[27] Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Conference on Decision and Control (Brighton, England, December 1991), pp. 1049–1054
[28] Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. In: Proceedings of the National Academy of Science of the USA 99, vol. 9, pp. 5988–5992 (2002)
[29] Vora N., Vora N.: Nonlinear model reduction of chemical reaction systems. AIChE J. 45(10), 2320–2332 (2001)
[30] Wang D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2003)
[31] Wang, D., Xia, B.: Stability Analysis of Biological Systems with Real Solution Classification. In: Proceedings of ISSAC 2005, pp. 354–361, Beijing (2005) · Zbl 1360.92048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.