×

Multiscale modelling of damage and failure in two-dimensional metallic foams. (English) Zbl 1270.74190

Summary: The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper we study these dependencies using a modelling framework that takes all these ingredients into account. We have developed a micromechanical model based on a discrete Voronoi representation of cellular metals that incorporates power-law strain hardening and damage development of the cell wall material. The influence of the relative density and material strain hardening on the cell wall damage behavior and overall fracture response is analyzed in detail. The effect of the cellular architecture is studied by varying the cell shape anisotropy and structural randomness. We also simulate the effect of post-processing heat treatments on the solid material plastic and fracture properties and how this affects the overall fracture profile and damage development. Finally, all material and architectural effects are summarized in a strength versus ductility graph, identifying trends for improved design of metallic foams.

MSC:

74R20 Anelastic fracture and damage

Software:

HSL; MKL
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alkhader, M.; Vural, M., Mechanical response of cellular solids: role of cellular topology and microstructural irregularity, Int. J. Eng. Sci., 46, 1035-1051 (2008) · Zbl 1213.74039
[2] Aly, M. S.; Almajid, A.; Nakano, S.; Ochiai, S., Fracture of open-cell copper foams under tension, Mater. Sci. Eng. A, 519, 1-2, 211-213 (2009)
[3] Amsterdam, E.; De Hosson, J. Th. M.; Onck, P. R., Failure mechanisms of closed-cell aluminium foam under monotonic and cyclic loading, Acta Mater., 54, 4465-4472 (2006)
[4] Amsterdam, E.; De Hosson, J. Th. M.; Onck, P. R., On the plastic collapse stress of open-cell aluminum foam, Scripta Mater., 59, 653-656 (2008)
[5] Amsterdam, E.; deVries, J. H.B.; De Hosson, J. Th. M.; Onck, P. R., The influence of strain-induced damage on the mechanical response of open-cell aluminum foam, Acta Mater., 56, 3, 609-618 (2008)
[6] Amsterdam, E.; Goodall, R.; Mortensen, A.; Onck, P. R.; De Hosson, J. Th. M., Fracture behavior of low-density replicated aluminum alloy foams, Mater. Sci. Eng. A, 496, 376-382 (2008)
[7] Amsterdam, E.; Onck, P. R.; De Hosson, J. Th. M., Fracture and microstructure of open cell aluminium foam, J. Mater. Sci., 40, 5813-5819 (2006)
[8] Amsterdam, E.; van Hoorn, H.; De Hosson, J. Th. M.; Onck, P. R., The influence of cell shape anisotropy on the tensile behaviour of open-cell aluminum foam, Adv. Eng. Mater., 10, 9, 877-881 (2008)
[9] Andrews, E. W.; Gioux, G.; Onck, P. R.; Gibson, L. J., Size effects in ductile cellular solids. Part II: experimental results, Int. J. Mech. Sci., 43, 701-713 (2001) · Zbl 1071.74680
[10] Ashby, M. F.; Evans, A.; Fleck, N. A.; Gibson, L. J.; Hutchinson, J. W.; Wadley, H. N.G., Metal Foams: A Design Guide (2000), Butterworth-Heinemann: Butterworth-Heinemann Oxford
[11] Badiche, X.; Forest, S.; Guibert, T.; Bienvenu, Y.; Bartout, J. D.; Ienny, P.; Croset, M.; Bernet, H., Mechanical properties and non-homogeneous deformation of open-cell foals: application of the mechanics of cellular solids and of porous materials, Mater. Sci. Eng. A, 289, 276-288 (2000)
[12] Banhart, J., Manufacture, characterization and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559-632 (2001)
[13] Banhart, J.; Baumeister, J., Deformation characteristics of metal foams, J. Mater. Sci., 33, 1431-1440 (1998)
[14] Bart-Smith, H.; Bastawros, A. F.; Mumm, D. R.; Evans, A. G.; Sypeck, D. J.; Wadley, H. N.G., Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping, Acta Mater., 46, 10, 3583-3592 (1998)
[15] Bastawros, A. F.; Bart-Smith, H.; Evans, A. G., Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, J. Mech. Phys. Solids, 48, 3, 301-322 (2000) · Zbl 0959.74502
[16] Bastawros, A. F.; Evans, A. G., Deformation heterogeneity in cellular Al alloys, Adv. Eng. Mater., 2, 4, 210-214 (2000)
[17] Burgoyne, C.; Crisfield, M. A., Numerical integration strategy for plates and shells, Int. J. Numer. Methods Eng., 29, 105-121 (1990) · Zbl 0724.73287
[18] Chen, C.; Fleck, N. A.; Lu, T. J., The mode I crack growth resistance of metallic foams, J. Mech. Phys. Solids, 49, 231-259 (2001) · Zbl 1048.74036
[19] Chen, J. Y.; Huang, Y.; Ortiz, M., Fracture analysis of cellular materials: a strain gradient model, J. Mech. Phys. Solids, 46, 5, 789-828 (1998) · Zbl 1056.74508
[20] Crisfield, M. A., The ‘eccentricity’ issue in the design of beam, plate and shell elements, Commun. Appl. Numer. Methods, 7, 47-56 (1991)
[21] Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures: Essentials, vol. 1 (1991), John Wiley & Sons · Zbl 0809.73005
[22] Degischer, H.-P.; Kriszt, B., Handbook of Cellular Metals (2002), Wiley-VCH Verlag GmbH & Co.: Wiley-VCH Verlag GmbH & Co. Weinheim
[23] Deshpande, V. S.; Fleck, N. A., Isotropic constitutive models for metallic foams, J. Mech. Phys. Solids, 48, 1253-1283 (2000) · Zbl 0984.74018
[24] Dillard, T.; Forest, S.; Ienny, P., Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams, Eur. J. Mech. A Solids, 25, 526-549 (2006) · Zbl 1094.74047
[25] Dillard, T.; Nguyen, F.; Maire, E.; Salvo, L.; Forest, S.; Bienvenu, Y.; Bartout, J.-D.; Croset, M.; Dendievel, R.; Cloetens, P., 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag. A, 85, 2147-2175 (2005)
[26] Gibson, L. J.; Ashby, M. F., Cellular Solids (1997), Cambridge University Press: Cambridge University Press Cambridge
[27] Gong, L.; Kyriakides, S.; Jang, W. Y., Compressive response of open-cell foams. Part-I: morphology and elastic properties, Int. J. Solids Struct., 42, 1355-1379 (2005) · Zbl 1120.74422
[28] Harders, H.; Hupfer, K.; Rosler, J., Influence of cell wall shape and density on the mechanical behaviour of 2D foam structures, Acta Mater., 53, 1335-1345 (2005)
[29] Harte, A. M.; Fleck, N. A.; Ashby, M. F., Fatigue failure of an open cell and a closed cell aluminium alloy foam, Acta Metall. Mater., 47, 8, 2511-2524 (1999)
[30] Harwel Subroutine Library, 2007. A collection of Fortran codes for large-scale scientific computation. \( \langle\) http://www.hsl.rl.ac.uk \(\rangle \); Harwel Subroutine Library, 2007. A collection of Fortran codes for large-scale scientific computation. \( \langle\) http://www.hsl.rl.ac.uk \(\rangle \)
[31] Huang, J. S.; Gibson, L. J., Fracture toughness of brittle foams, Acta. Metall. Mater., 39, 7, 1627-1636 (1991)
[32] Intel MKL, 2007. Intel Math Kernel library. \( \langle\) http://software.intel.com/en-us/intel-mkl/\( \rangle \); Intel MKL, 2007. Intel Math Kernel library. \( \langle\) http://software.intel.com/en-us/intel-mkl/\( \rangle \)
[33] Kim, H. S.; Al-Hasani, S. T.S., A morphological elastic model of general hexagonal columnar structures, Int. J. Mech. Sci., 43, 1027-1060 (2001) · Zbl 0990.74051
[34] Kim, H. S.; Al-Hasani, S. T.S., The effect of doubly tapered strut morphology on the plastic yield surface of cellular materials, Int. J. Mech. Sci., 44, 1559-1581 (2002) · Zbl 1032.74651
[35] Krishna, B. V.; Bose, S.; Bandyopadhyay, A., Strength of open-cell 6101 aluminium foams under free and constrained compression, Mater. Sci. Eng. A, 452-453, 178-188 (2007)
[36] Landau, L. D.; Lifshitz, E. M., The Theory of Elasticity (1959), Addison-Wesley · Zbl 0178.28704
[37] Mangipudi, K.R., Amsterdam, E., De Hosson, J.Th.M., Onck, P.R., 2008. Multi-scale modelling of fracture in open-cell metal foams. In: Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams. MetFoam-2007, pp. 363-366.; Mangipudi, K.R., Amsterdam, E., De Hosson, J.Th.M., Onck, P.R., 2008. Multi-scale modelling of fracture in open-cell metal foams. In: Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams. MetFoam-2007, pp. 363-366.
[38] Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R., The microstructural origin of strain hardening in two-dimensional open-cell metal foams, Int. J. Solids Struct., 47, 16, 2081-2096 (2010) · Zbl 1194.74017
[39] Marchi, C. S.; Despois, J.-F.; Mortensen, A., Uniaxial deformation of open-cell aluminum foam: the role of internal damage, Acta Mater., 52, 2895-2902 (2004)
[40] Markaki, A. E.; Clyne, T. W., The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams, Acta Mater., 49, 1677-1686 (2001)
[41] McCullough, K. Y.G.; Fleck, N. A.; Ashby, M. F., Uniaxial stress-strain behaviour of aluminium alloy foams, Acta Mater., 47, 8, 2323-2330 (1999)
[42] Motz, C.; Pippan, R., Deformation behaviour of closed-cell aluminium foams in tension, Acta Mater., 49, 2463-2470 (2001)
[43] Nieh, T. G.; Higashi, K.; Wadsworth, J., Effect of cell morphology on the compressive properties of open-cell aluminium foams, Mater. Sci. Eng. A, 283, 105-110 (2000)
[44] Onck, P. R.; Andrews, E. W.; Gibson, L. J., Size effects in ductile cellular solids. Part I: modelling, Int. J. Mech. Sci., 43, 681-699 (2001) · Zbl 1071.74682
[45] Onck, P. R.; van Merkerk, R.; De Hosson, J. Th. M., Fracture of metal foams: in-situ testing and numerical modeling, Adv. Eng. Mater., 6, 429-431 (2004)
[46] Ostoja-Starzewski, M., Graph approach to the constitutive modelling of heterogeneous solids, Mech. Res. Commun., 14, 4, 255-262 (1987) · Zbl 0635.73007
[47] Romijn, N. E.R.; Fleck, N. A., The fracture toughness of planar lattices: imperfection sensitivity, J. Mech. Phys. Solids, 55, 2538-2564 (2007) · Zbl 1159.74416
[48] Schmidt, I.; Fleck, N. A., Ductile fracture of two-dimensional cellular structures, Int. J. Fract., 111, 327-342 (2001)
[49] Schmidt, I.; Richter, C.; Gross, D., Ductile crack growth in metallic foams, (Hutter, K.; Baaser, H., Lecture Notes in Applied and Computational Mechanics, vol. 10 (2000), Springer), 363-380 · Zbl 1178.74151
[50] Silva, M. J.; Gibson, L. J., The effect of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids, Int. J. Mech. Sci., 39, 5, 549-563 (1997) · Zbl 0900.73667
[51] Silva, M. J.; Hayes, W. C.; Gibson, L. J., The effect of non-periodic microstructure on the elastic properties of two-dimensional cellular solids, Int. J. Mech. Sci., 37, 11, 1161-1177 (1995) · Zbl 0859.73048
[52] Tekoğlu, C.; Gibson, L. J.; Pardoen, T.; Onck, P. R., Size effects in foams: experiments and modelling, Prog. Mater. Sci., 56, 2, 109-138 (2010)
[53] Tekoğlu, C.; Onck, P. R., Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models, J. Mech. Phys. Solids, 56, 3541-3564 (2008) · Zbl 1171.74411
[54] Thornton, P. H.; Magee, C. L., The deformation of aluminium foams, Metall. Trans. A, 6, 1253-1263 (1975)
[55] Warren, W. E.; Kraynik, A. M., Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials, Mech. Mater., 6, 27-37 (1987)
[56] Zhou, J.; Allameh, S.; Soboyejo, W. O., Microscale testing of the strut in open-cell aluminium foams, J. Mater. Sci., 40, 429-439 (2005)
[57] Zhou, J.; Shrotriya, P.; Soboyejo, W. O., Mechanisms and mechanics of compressive deformation in open-cell al foams, Mech. Mater., 36, 781-797 (2004)
[58] Zhu, H. X.; Hobdell, J. R.; Windle, A. H., Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs, J. Mech. Phys. Solids, 49, 857-870 (2001) · Zbl 1011.74057
[59] Zhu, H. X.; Thorpe, S. M.; Windle, A. H., The geometrical properties of irregular two-dimensional Voronoi tessellations, Philos. Mag. A, 81, 12, 2765-2783 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.