×

Neutrino-flavoured sneutrino dark matter. (English) Zbl 1271.83094

Summary: A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique ‘smoking gun’ signature – sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of \(\nu_{\mu}\) and \(\nu_{\tau}\) (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of the parameter space through both elastic and inelastic scattering. We show in detail that the observed neutrino masses and mixings can arise as a consequence of supersymmetry breaking effects in the sneutrino DM sector, consistent with all experimental constraints.

MSC:

83F05 Relativistic cosmology
81V15 Weak interaction in quantum theory
81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81U35 Inelastic and multichannel quantum scattering
81R40 Symmetry breaking in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett.68 (1992) 741 [SPIRES].
[2] D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ωb/ΩDMpuzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [SPIRES].
[3] G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry of the universe, hep-ph/0406281 [SPIRES].
[4] R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev.D 71 (2005) 023510 [hep-ph/0411133] [SPIRES].
[5] N. Cosme, L. Lopez Honorez and M.H.G. Tytgat, Leptogenesis and dark matter related?, Phys. Rev.D 72 (2005) 043505 [hep-ph/0506320] [SPIRES].
[6] D. Suematsu, Dark world and baryon asymmetry from a common source, JCAP01 (2006) 026 [astro-ph/0511742] [SPIRES].
[7] S. Abel and V. Page, Affleck-Dine (pseudo)-Dirac neutrinogenesis, JHEP05 (2006) 024 [hep-ph/0601149] [SPIRES].
[8] S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCAP05 (2006) 005 [hep-ph/0602027] [SPIRES].
[9] J. McDonald, Right-handed sneutrino condensate cold dark matter and the baryon-to-dark matter ratio, JCAP01 (2007) 001 [hep-ph/0609126] [SPIRES].
[10] V. Page, Non-thermal right-handed sneutrino dark matter and the ΩDM/Ωbproblem, JHEP04 (2007) 021 [hep-ph/0701266] [SPIRES].
[11] F. Deppisch and A. Pilaftsis, Thermal right-handed sneutrino dark matter in the FD-term model of hybrid inflation, JHEP10 (2008) 080 [arXiv:0808.0490] [SPIRES].
[12] D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev.D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].
[13] G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, arXiv:0909.2034 [SPIRES].
[14] T. Cohen and K.M. Zurek, Leptophilic dark matter from the lepton asymmetry, arXiv:0909.2035 [SPIRES].
[15] N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev.D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].
[16] N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Neutrino masses at v3/2, hep-ph/0007001 [SPIRES].
[17] F. Borzumati and Y. Nomura, Low-scale see-saw mechanisms for light neutrinos, Phys. Rev.D 64 (2001) 053005 [hep-ph/0007018] [SPIRES].
[18] F. Borzumati, K. Hamaguchi, Y. Nomura and T. Yanagida, Variations on supersymmetry breaking and neutrino spectra, hep-ph/0012118 [SPIRES].
[19] D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev.D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].
[20] D. Tucker-Smith and N. Weiner, The status of inelastic dark matter, Phys. Rev.D 72 (2005) 063509 [hep-ph/0402065] [SPIRES].
[21] J. March-Russell and S.M. West, A simple model of neutrino masses from supersymmetry breaking, Phys. Lett.B 593 (2004) 181 [hep-ph/0403067] [SPIRES].
[22] T. Hambye, J. March-Russell and S.M. West, TeV scale resonant leptogenesis from supersymmetry breaking, JHEP07 (2004) 070 [hep-ph/0403183] [SPIRES].
[23] S.M. West, Naturally degenerate right handed neutrinos, Phys. Rev.D 71 (2005) 013004 [hep-ph/0408318] [SPIRES].
[24] DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J.C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].
[25] Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for inelastic dark matter, JHEP05 (2009) 076 [arXiv:0901.0557] [SPIRES].
[26] S. Nussinov, L.-T. Wang and I. Yavin, Capture of inelastic dark matter in the Sun, JCAP08 (2009) 037 [arXiv:0905.1333] [SPIRES].
[27] A. Menon, R. Morris, A. Pierce and N. Weiner, Capture and indirect detection of inelastic dark matter, arXiv:0905.1847 [SPIRES].
[28] L.J. Hall, T. Moroi and H. Murayama, Sneutrino cold dark matter with lepton-number violation, Phys. Lett.B 424 (1998) 305 [hep-ph/9712515] [SPIRES].
[29] S. Kolb, M. Hirsch, H.V. Klapdor-Kleingrothaus and O. Panella, Collider signatures of sneutrino cold dark matter, Phys. Lett.B 478 (2000) 262 [hep-ph/9910542] [SPIRES].
[30] T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev.D 73 (2006) 051301 [hep-ph/0512118] [SPIRES].
[31] B. Garbrecht, C. Pallis and A. Pilaftsis, Anatomy of FD-term hybrid inflation, JHEP12 (2006) 038 [hep-ph/0605264] [SPIRES].
[32] T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev.D 75 (2007) 065001 [hep-ph/0612211] [SPIRES].
[33] H.-S. Lee, K.T. Matchev and S. Nasri, Revival of the thermal sneutrino dark matter, Phys. Rev.D 76 (2007) 041302 [hep-ph/0702223] [SPIRES].
[34] C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: relic abundance and detection rates, JHEP11 (2007) 029 [arXiv:0709.4477] [SPIRES].
[35] Z. Thomas, D. Tucker-Smith and N. Weiner, Mixed sneutrinos, dark matter and the LHC, Phys. Rev.D 77 (2008) 115015 [arXiv:0712.4146] [SPIRES].
[36] C. Arina, Sneutrino cold dark matter in extended MSSM models, arXiv:0805.1991 [SPIRES].
[37] C. Arina, F. Bazzocchi, N. Fornengo, J.C. Romao and J.W.F. Valle, Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett.101 (2008) 161802 [arXiv:0806.3225] [SPIRES].
[38] D.G. Cerdeno, C. Muñoz and O. Seto, Right-handed sneutrino as thermal dark matter, Phys. Rev.D 79 (2009) 023510 [arXiv:0807.3029] [SPIRES].
[39] R. Allahverdi, B. Dutta, K. Richardson-McDaniel and Y. Santoso, Sneutrino dark matter and the observed anomalies in cosmic rays, Phys. Lett.B 677 (2009) 172 [arXiv:0902.3463] [SPIRES].
[40] D.G. Cerdeno and O. Seto, Right-handed sneutrino dark matter in the NMSSM, JCAP08 (2009) 032 [arXiv:0903.4677] [SPIRES].
[41] D.A. Demir, L.L. Everett, M. Frank, L. Selbuz and I. Turan, Sneutrino dark matter: symmetry protection and cosmic ray anomalies, arXiv:0906.3540 [SPIRES].
[42] R. Allahverdi, S. Bornhauser, B. Dutta and K. Richardson-McDaniel, Prospects for indirect detection of sneutrino dark matter with IceCube, Phys. Rev.D 80 (2009) 055026 [arXiv:0907.1486] [SPIRES].
[43] D.G. Cerdeno, Thermal right-handed sneutrino dark matter with a singlet Higgs, AIP Conf. Proc.1115 (2009) 163 [SPIRES].
[44] R. Allahverdi, Sneutrino dark matter in light of PAMELA, arXiv:0909.5643 [SPIRES].
[45] A. Kumar, D. Tucker-Smith and N. Weiner, Neutrino mass, sneutrino dark matter and signals of lepton flavor violation in the MRSSM, arXiv:0910.2475 [SPIRES]. · Zbl 1291.81459
[46] WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl.180 (2009) 330 [arXiv:0803.0547] [SPIRES].
[47] W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett.70 (1993) 2661 [SPIRES].
[48] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, arXiv:0911.1120 [SPIRES]. · Zbl 1271.83088
[49] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2:1, Comput. Phys. Commun.180 (2009) 747 [arXiv:0803.2360] [SPIRES]. · Zbl 1198.81033
[50] A. Semenov, LanHEP — A package for the automatic generation of Feynman rules in field theory. Version 3:0, Comput. Phys. Commun.180 (2009) 431 [arXiv:0805.0555] [SPIRES]. · Zbl 1198.81021
[51] Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev.D 70 (2004) 083523 [hep-ex/0404025] [SPIRES].
[52] J. March-Russell, C. McCabe and M. McCullough, Inelastic dark matter, non-standard halos and the DAMA/LIBRA results, JHEP05 (2009) 071 [arXiv:0812.1931] [SPIRES].
[53] CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett.102 (2009) 011301 [arXiv:0802.3530] [SPIRES].
[54] XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett.100 (2008) 021303 [arXiv:0706.0039] [SPIRES].
[55] S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev.D 79 (2009) 043513 [arXiv:0807.2250] [SPIRES].
[56] D.B. Cline, W. Ooi and H. Wang, Constraints on inelastic dark matter signal using ZEPLIN-II results, arXiv:0906.4119 [SPIRES].
[57] K. Schmidt-Hoberg and M.W. Winkler, Improved constraints on inelastic dark matter, JCAP09 (2009) 010 [arXiv:0907.3940] [SPIRES].
[58] A. Strumia and F. Vissani, Neutrino masses and mixings and …, hep-ph/0606054 [SPIRES].
[59] N. Itoh, H. Hayashi, A. Nishikawa, and Y. Kohyama, Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, Bremsstrahlung, and recombination neutrino processes, Astrophys. J. Suppl.102 (1996) 411.
[60] H. Yuksel, S. Horiuchi, J.F. Beacom and S. Ando, Neutrino constraints on the dark matter total annihilation cross section, Phys. Rev.D 76 (2007) 123506 [arXiv:0707.0196] [SPIRES].
[61] F. Halzen and D. Hooper, The indirect search for dark matter with IceCube, New J. Phys.11 (2009) 105019 [arXiv:0910.4513] [SPIRES].
[62] M. Cirelli et al., Spectra of neutrinos from dark matter annihilations, Nucl. Phys.B 727 (2005) 99 [hep-ph/0506298] [SPIRES].
[63] H. Kraus et al., EURECA: the European future of dark matter searches with cryogenic detectors, Nucl. Phys. Proc. Suppl.173 (2007) 168 [SPIRES].
[64] E. Aprile, L. Baudis and f.t.X. Collaboration, Status and sensitivity projections for the XENON100 dark matter experiment, arXiv:0902.4253 [SPIRES].
[65] L.W. Kastens, S.B. Cahn, A. Manzur and D.N. McKinsey, Calibration of a liquid Xenon detector with Kr-83m, Phys. Rev.C 80 (2009) 045809 [arXiv:0905.1766] [SPIRES].
[66] H. Yamamoto, Physics at International Linear Collider (ILC), J. Phys. Soc. Jap.76 (2007) 111014 [arXiv:0709.0899] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.