×

Complex-shaped beam element and graph-based optimization of compliant mechanisms. (English) Zbl 1273.74406

Summary: Compliant mechanisms are designed to be intentionally flexible, providing hingeless mechanisms. This work contributes a complex-shaped beam element formulation in conjunction with the ground structure approach. We identify compliant mechanism design solutions by using evolutionary topology optimization and increase flexibility by using a parametrization concept based on graph theory. The new operators for evolutionary optimization are also explained and sample problems are used to address the question of how our contribution increases design solution space.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Akhtar S, Tai K, Prasad J (2002) Topology optimization of compliant mechanisms using evolutionary algorithm with design geometry encoded as a graph. In: Computers and Information in Engineering, DECT, ASME
[2] Ananthasuresh G, Kota S (1995) Designing compliant mechanisms. ASME Mech Eng 117:93–96 · doi:10.1115/1.2836476
[3] Bendsoe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[4] Bendsoe M, Sigmund O (2003) Topology optimization. Springer
[5] Castigliano (1875) Nuova theria intorno dell’ equilibrio dei sistemi elastici. Atti Acc. Sci
[6] Frecker M, Kota S, Kikuchi N (1998) Optimal design of compliant mechanisms for smart structures applications. In: Mathematics and Control in Smart Structures, vol 3323, SPIE, pp 234–242
[7] Giger M, Ermanni P (2006) Evolutionary truss topology optimization using a graph-based parameterization concept. Struct Multidisc Optim 32:313–326 · doi:10.1007/s00158-006-0028-8
[8] Goldberg D (1989) Genetic Algorithms in search, optimzation and machine learning. Addison-Wesley · Zbl 0721.68056
[9] Howell L (2001) Compliant mechanisms. Wiley, ISBN 0-471-38478-X
[10] Joo J, Kota S (2004) Topological synthesis of compliant mechanisms using nonlinear beam elements. Mech Based Des Struct Mach 32(1):17–38 · doi:10.1081/SME-120026588
[11] Joo J, Kota S, Kikuchi N (2000) Topological synthesis of compliant mechanisms using linear beam elements. Mech Struct and Mach 28(4):245–280 · doi:10.1081/SME-100102022
[12] Koenig O (2004) Evolutionary design optimization. PhD thesis, ETH Zurich
[13] Kota S, Joo J, Li Z, Rodgers S, Sniegowski J (2001) Design of compliant mechanisms: applications to mems. Analog Integr Circuits Signal Process 29:7–15 · doi:10.1023/A:1011265810471
[14] Kress G, Sauter M, Ermanni P (2006) Complex-shaped beam finite element. Finite Elem Anal Des 43:112–126 · doi:10.1016/j.finel.2006.08.001
[15] Lobontiu N, Garcia E (2003) Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput Struct 81:2797–2810 · doi:10.1016/j.compstruc.2003.07.003
[16] Lu KJ, Kota S (2002) Compliant mechanism synthesis for shape-change applications: preliminary results. In: Rao V (ed) Signal processing and control, vol 4693, SPIE, pp 161–172
[17] Lu KJ, Kota S (2003) Synthesis of shape morphing compliant mechanisms using a load path representation method. In: Smith R (ed) Signal processing, and control, vol 5049, SPIE, pp 337–348
[18] Nishiwaki S, Frecker M, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Meth Eng 42:535–559 · Zbl 0908.73051 · doi:10.1002/(SICI)1097-0207(19980615)42:3<535::AID-NME372>3.0.CO;2-J
[19] Parsons R, Canfield S (2002) Developing genetic programming techniques for the design of compliant mechanisms. Struct Multidisc Optim 24:78–86 · doi:10.1007/s00158-002-0216-0
[20] Rahmatalla S, Swan C (2005) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Meth Eng 62:1575–1605 · Zbl 1121.74440
[21] Saxena A (2005) Synthesis of compliant mechanisms for path generation using genetic algorithm. ASME J Mech Des 127:745–752 · doi:10.1115/1.1899178
[22] Saxena A, Ananthasuresh G (2000) On a optimal property of compliant mechanism. Struct Multidisc Optim 19:36–49 · doi:10.1007/s001580050084
[23] Siek J, Lee L, Lumsdaine A (2002) The boost graph library, C++ in-depth series. Addison-Wesley
[24] Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidisc Optim 21:120–127 · doi:10.1007/s001580050176
[25] Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318 · Zbl 0850.73195 · doi:10.1016/0045-7825(91)90245-2
[26] West D (2001) Introduction to graph theory. Prentice Hall · Zbl 0991.05002
[27] Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidisc Optim 23:49–62 · doi:10.1007/s00158-001-0165-z
[28] Yin L, Ananthasuresh G (2003) Design of distributed compliant mechanisms. Mech Based Des Struct Mach 31(2):151–179 · doi:10.1081/SME-120020289
[29] Zhou H, Ting KL (2005) Topological synthesis of compliant mechanisms using spanning tree theory. ASME J Mech Des 127:753–759 · doi:10.1115/1.1900148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.