×

Monotone first-order weighted schemes for scalar conservation laws. (English) Zbl 1286.65108

The author presents the so-called monotone first-order weighted method for the numerical solution of conservation laws. The scheme is proposed and analysed for the 1D and then extended to the 2D case. Finally, 1D and 2D numerical examples demonstrating the accuracy are presented.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

GFORCE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lax, Hyperbolic systems of conservation laws and mathematical theory of shock waves (1973) · Zbl 0268.35062 · doi:10.1137/1.9781611970562
[2] A.I. Volpert The spaces BV and quasilinear equations, Math USSR-Sb 2 1967 225 267
[3] Kruzkov, First order quasilinear equations in several independent variables, Math USSR-Sb 10 pp 217– (1970) · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[4] Eymard, Handbook for Numerical Analysis pp 715– (2000)
[5] LeVeque, Finite volume methods for hyperbolic problems (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[6] Steger, Flux vector splitting of the inviscid gasdynamics equations with applications to finite difference methods, J Comput Phys 40 pp 263– (1981) · Zbl 0468.76066 · doi:10.1016/0021-9991(81)90210-2
[7] van Leer, Lect Notes Phys, in: In Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics pp 507– (1982) · doi:10.1007/3-540-11948-5_66
[8] Godunov, A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb 47 pp 357– (1959) · Zbl 0171.46204
[9] Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (1999) · Zbl 0923.76004 · doi:10.1007/978-3-662-03915-1
[10] Harten, High resolution schemes for hyperbolic conservation laws, J Comput Phys 135 pp 260– (1997) · Zbl 0890.65096 · doi:10.1006/jcph.1997.5713
[11] Liska, Composite schemes for conservation laws, SIAM J Numer Anal 35 pp 2250– (1998) · Zbl 0920.65054 · doi:10.1137/S0036142996310976
[12] Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J Numer Anal 21 pp 995– (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[13] Toro, MUSTA Fluxes for systems of conservation laws, J Comput Phys 66 pp 403– (2006) · Zbl 1097.65091 · doi:10.1016/j.jcp.2005.12.012
[14] Roe, Some contributions to the modeling of discontinuous flows, Lect Notes Appl Math 22 pp 163– (1985) · Zbl 0665.76072
[15] van Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J Comput Phys 32 pp 101– (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[16] Jerez, A new TVD flux-limiter scheme for solving nonlinear hyperbolic equations, J Comput Appl Math 234 pp 1395– (2010) · Zbl 1205.65234 · doi:10.1016/j.cam.2010.02.015
[17] Crandall, Monotone difference approximations for scalar conservations Laws, Math Comput 34 pp 1– (1980) · Zbl 0423.65052 · doi:10.1090/S0025-5718-1980-0551288-3
[18] LeVeque, Numerical methods for conservation laws (1992) · doi:10.1007/978-3-0348-8629-1
[19] Crandall, The method of fractional steps for conservation laws, Numer Math 34 pp 285– (1980) · Zbl 0438.65076 · doi:10.1007/BF01396704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.