×

The Pythagoras number of real sum of squares polynomials and sum of square magnitudes of polynomials. (English) Zbl 1334.11025

Summary: In this paper, we conjecture a formula for the value of the Pythagoras number for real multivariate sum of squares polynomials as a function of the (total or coordinate) degree and the number of variables. The conjecture is based on the comparison between the number of parameters and the number of conditions for a corresponding low-rank representation. This is then numerically verified for a number of examples. Additionally, we discuss the Pythagoras number of (complex) multivariate Laurent polynomials that are sum of square magnitudes of polynomials on the \(n\)-torus. For both types of polynomials, we also propose an algorithm to numerically compute the Pythagoras number and give some numerical illustrations.

MSC:

11E25 Sums of squares and representations by other particular quadratic forms
12Y05 Computational aspects of field theory and polynomials (MSC2010)
65H10 Numerical computation of solutions to systems of equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Barvinok, A.I.: Problems of distance geometry and convex properties of quadratic maps. Discret. Comput. Geom. 13, 189-202 (1995) · Zbl 0829.05025 · doi:10.1007/BF02574037
[2] Bochnack, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)
[3] Calderon, A., Pataki, G.: On the phases of Fourier coefficients for positive real periodic functions. In: Perpinsky, R. (ed.) Computing Methods and Phase Problem in X-Ray Crystal, Analysis, pp. 339-346 (1952)
[4] Choi, M.-D., Dai, Z.D., Lam, T.Y., Reznick, B.: Pythagoras number of some affine algebras and local algebras. Journal für die Reine und Angewandte Mathematik 1982(336), 45-82 (1982) · Zbl 0499.12018
[5] Choi, M.-D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: Proceedings of Symposia in Pure Mathematics, vol. 58, pp. 103-126 (1995) · Zbl 0821.11028
[6] Dritschel, M.A.: On factorization of trigonometric polynomials. Integral Equ. Oper. Theory 49(1), 11-42 (2004) (in English) · Zbl 1070.47011
[7] Geronimo, J.S., Lai, M.-J.: Factorization of multivariate positive Laurent polynomials. J. Approx. Theory 139(1-2), 327-345 (2006) · Zbl 1099.12001
[8] Hilbert, D.: Über die Darstellung Definiter Formen als Summe von Formen-Quadraten. Math. Ann. 32, 342-350 (1888) · JFM 20.0198.02 · doi:10.1007/BF01443605
[9] Lam, T.Y.: Algebraic Theory of Quadratic Forms, 2nd edn. Addison Wesley, Boston (1980) · Zbl 0437.10006
[10] Mclean, J.W., Woerdeman, H.J.: Spectral factorizations and sums of squares representation via semi-definite programming. SIAM J. Matrix Anal. Appl. 23, 646-655 (2001) (in English) · Zbl 1003.65152
[11] Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. Lecture Notes Math. 630, 105-116 (1978) · doi:10.1007/BFb0067700
[12] Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23(2), 339-358 (May 1998) · Zbl 0977.90051
[13] Powers, V., Wörmann, T.: An algorithm for sums of squares of real polynomials. J. Pure Appl. Algebra 127, 99-104 (1998) · Zbl 0936.11023 · doi:10.1016/S0022-4049(97)83827-3
[14] Prestel, A., Delzell, C.N.: Positive polynomials. Springer monographs in mathematics. Springer, Berlin (2001) · Zbl 0987.13016
[15] Rajwade, A.R.: Squares. Cambridge University Press, Cambridge (1993) · Zbl 0785.11022
[16] Robinson, R.M.: Some definite polynomials which are not sums of squares of real polynomials. In: Selected Questions of Algebra and Logic, pp. 264-282. Acad. Sci. USSR (1973)
[17] Rudin, W.: The extension problem for positive-definite functions. Ill. J. Math. 7, 532-539 (1963) · Zbl 0114.31003
[18] Sorber, L., Van Barel, M., De Lathauwer, L.: Unconstrained optimization of real functions in complex variables. SIAM J. Optim. (accepted) · Zbl 1260.90150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.