×

Timed concurrent constraint programming for analysing biological systems. (English) Zbl 1277.68188

Busi, Nadia (ed.) et al., Proceedings of the first workshop on membrane computing and biologically inspired process calculi (MeCBIC 2006), S. Servolo, Venice, Italy, July 9, 2006. Amsterdam: Elsevier. Electronic Notes in Theoretical Computer Science 171, No. 2, 117-137 (2007).
Summary: We present our first approach to model and verify biological systems using ntcc, a concurrent constraint process calculus. We argue that the partial information constructs in ntcc can provide a suitable language for such systems. We also illustrate how ntcc may provide a unified framework for the analysis of biological systems, as they can be described, simulated and verified using the elements provided by the calculus.
For the entire collection see [Zbl 1273.68017].

MSC:

68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
68Q60 Specification and verification (program logics, model checking, etc.)
92C42 Systems biology, networks

Software:

cc(FD); Simpathica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antoniotti, M.; Piazza, C.; Policriti, A.; Simeoni, M.; Mishra, B., Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice, Theor. Comput. Sci., 325, 1, 45-67 (2004) · Zbl 1070.68059
[2] A. Arbeláez, J. Gutiérrez, C. Olarte, and C. Rueda. A Generic Framework to Model, Simulate and Verify Genetic Regulatory Networks. In Proc. of 32nd Latin-American Conference on Informatics (CLEI 2006); A. Arbeláez, J. Gutiérrez, C. Olarte, and C. Rueda. A Generic Framework to Model, Simulate and Verify Genetic Regulatory Networks. In Proc. of 32nd Latin-American Conference on Informatics (CLEI 2006)
[3] ntccSim: A simulation tool for timed concurrent processes (2006), Available at
[4] Bockmayr, A.; Courtois, A., Using hybrid concurrent constraint programming to model dynamic biological systems, (Stuckey, Peter J., ICLP. ICLP, LNCS, volume 2401 (2002), Springer), 85-99 · Zbl 1045.68527
[5] A. Bockmayr, A. Courtois, D. Eveillard, and M. Vezain. Building and Analysing an Integrative Model of HIV-1 RNA Alternative Splicing. In Danos and Schächter [9]; A. Bockmayr, A. Courtois, D. Eveillard, and M. Vezain. Building and Analysing an Integrative Model of HIV-1 RNA Alternative Splicing. In Danos and Schächter [9] · Zbl 1088.93501
[6] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning biochemical networks from temporal logic properties. Transactions on Computational Systems Biology; L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning biochemical networks from temporal logic properties. Transactions on Computational Systems Biology
[7] L. Cardelli. Brane Calculi. In Danos and Schächter [9]; L. Cardelli. Brane Calculi. In Danos and Schächter [9] · Zbl 1088.68657
[8] Danos, V.; Laneve, C., Formal molecular biology, Theor. Comput. Sci., 325, 1, 69-110 (2004) · Zbl 1071.68041
[9] (Danos, V.; Schächter, V., Computational Methods in Systems Biology. Computational Methods in Systems Biology, International Conference CMSB 2004, Paris, France, May 26-28, 2004. Computational Methods in Systems Biology. Computational Methods in Systems Biology, International Conference CMSB 2004, Paris, France, May 26-28, 2004, LNCS, volume 3082 (2005), Springer), Revised Selected Papers · Zbl 1059.68002
[10] Eveillard, D.; Ropers, D.; de Jong, H.; Branlant, C.; Bockmayr, A., A multi-scale constraint programming model of alternative splicing regulation, Theor. Comput. Sci., 325, 1, 3-24 (2004) · Zbl 1071.68099
[11] Gupta, V.; Jagadeesan, R.; Saraswat, V. A.; Bobrow, D. G., Programming in hybrid constraint languages, (Antsaklis, P. J.; Kohn, W.; Nerode, A.; Sastry, S., Hybrid Systems. Hybrid Systems, LNCS, volume 999 (1994), Springer), 226-251
[12] Van Hentenryck, P.; Saraswat, V.; Deville, Y., Design, Implementation, and Evaluation of the Constraint Language cc(FD), (Constraint Programming. Constraint Programming, LNCS, volume 910 (1994), Springer), 293-316 · Zbl 0920.68026
[13] Mishra, B.; Antoniotti, M.; Paxia, S.; Ugel, N., Simpathica: A Computational Systems Biology Tool within the Valis Bioinformatics Environment, (Eiles, E.; Kriete, A., Computational Systems Biology (2005), Elsevier)
[14] Nielsen, M.; Palamidessi, C.; Valencia, F., Temporal Concurrent Constraint Programming: Denotation, Logic and Applications, Nordic Journal of Computing, 9, 145-188 (2002) · Zbl 1018.68019
[15] C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Danos and Schächter [9]; C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Danos and Schächter [9] · Zbl 1088.68646
[16] Regev, A.; Panina, E. M.; Silverman, W.; Cardelli, L.; Shapiro, E., Bioambients: an abstraction for biological compartments, Theor. Comput. Sci., 325, 1, 141-167 (2004) · Zbl 1069.68569
[17] Regev, A.; Shapiro, E., Cells as Computation, Nature, 419, 343 (September 2002)
[18] Regev, A.; Shapiro, E., The \(π\)-calculus as an abstraction for biomolecular systems, (Modelling in Molecular Biology. Modelling in Molecular Biology, Natural Computing Series (2004), Springer), 219-266
[19] V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent constraint programming. In POPL ’91; V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent constraint programming. In POPL ’91
[20] Scheiner-Bobis, G., The sodium pump: Its molecular properties and mechanics of ion transport, Euro. J. Biochem., 269, 2424-2433 (2002)
[21] Valencia, F., Decidability of Infinite-State Timed CCP Process and First-Order LTL, Theor. Comput. Sci., 330, 3, 577-607 (2005) · Zbl 1078.68110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.