×

GANM: A protein-ligand docking approach based on genetic algorithm and normal modes. (English) Zbl 1284.92028

MSC:

92C40 Biochemistry, molecular biology
92D20 Protein sequences, DNA sequences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belda, I., ENPDA: an evolutionary structure-based de novo peptide design algorithm, Journal of Computer-Aided Molecular Design, 19, 585-601 (2005)
[2] Baldi, P., Exploiting the past and the future in protein secondary structure prediction, Bioinformatics, 15, 11, 937-946 (1999)
[3] Peterson, R. W., Improved side-chain prediction accuracy using an ab initio potential energy function and very large rotamer library, Protein Science, 13, 735-751 (2004)
[4] Norberg, J.; Nilsson, L., Advances in biomolecular simulations: methodology and recent applications, Quarterly Review of Biophysics, 36, 257-306 (2003)
[5] Osterberg, F.; Morris, G. M.; Sanner, M. F.; Olson, A. J.; Goodsell, D. S., Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock, Proteins, 46, 34-40 (2002)
[6] de Magalhães, C. S., A genetic algorithm for the ligand-protein docking problem, Genetics and Molecular Biology, 27, 605-610 (2004)
[7] Floquet, N.; Marechal, J. D.; Badet-Denisot, M. A.; Robert, C. H.; Dauchez, M.; Perahia, D., Using normal modes analysis as a prerequisite for drug design: application to matrix metalloproteinase inhibitors, FEBS Letters, 580, 5130-5136 (2006)
[8] Mouawad, L.; Perahia, D., (Cui, Qiang; Bahar, Ivet, Normal Mode Analysis Theory and Applications to Biological and Chemical Systems (2006), Chapman & Hall)
[9] Brooijmans, N.; Kuntz, D. I., Molecular recognition and docking algorithms, Annual Review of Biophysics and Biomolecular Structure, 32, 335-373 (2003)
[10] Halperin, I., Principles of docking: an overview of search algorithms and a guide to scoring functions, Proteins: Structure, Function, and Genetics, 47, 409-443 (2002)
[11] Spyrakis, F., The consequences of scoring docked ligand conformations using free energy correlations, European Journal of Medicinal Chemistry, 42, 921-933 (2007)
[12] Thomsen, R.; Christensen, H., MolDock: a new technique for high-accuracy molecular docking, Journal of Medicinal Chemistry, 49, 3315-3321 (2006)
[13] Huang, S. Y.; Zou, X., Efficient molecular docking of NMR structures: application to HIV-1 protease, Protein Science, 16, 43-51 (2007)
[14] Guerler, A.; Moll, S.; Weber, M.; Meyer, H.; Cordes, F., Selection and flexible optimization of binding modes from conformation ensembles, Biosystems, 92, 42-48 (2008)
[15] Pita, S. S.R.; Fernandes, T. V.A.; Caffarena, E. R.; Pascutti, P. G., Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing, International Journal of Quantum Chemistry, 108, 2608-2614 (2008)
[16] Floquet, N.; Durand, P.; Maigret, B.; Badet, B.; Badet-Denisot, M. A.; Perahia, D., Collective motions in glucosamine-6-phosphate synthase: influence of ligand binding and role in ammonia channelling and opening of the fructose-6-phosphate binding site, Journal of Molecular Biology, 385, 653-664 (2009)
[17] Miteva, M. A.; Guyon, F.; Tufféry, P., Frog2: efficient 3D conformation ensemble generation for small compound, Nucleic Acid Research, 38, Suppl. 2, W622-W627 (2010)
[18] M.A. Miteva, C.H. Robert, J.D. Maréchal, D. Perahia, Receptor Flexibility in Ligand Docking and Virtual Screening, Bentham Science Publishers eBook «In silico lead discovery» (Chapter 6).; M.A. Miteva, C.H. Robert, J.D. Maréchal, D. Perahia, Receptor Flexibility in Ligand Docking and Virtual Screening, Bentham Science Publishers eBook «In silico lead discovery» (Chapter 6).
[19] Sperandio, O.; Mouawad, L.; Pinto, E.; Villoutreix, B. O.; Perahia, D.; Miteva Maria, A., How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis, European Biophysics Journal, 39, 1365-1372 (2010)
[20] W.F. Van Gunsteren, H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, Groningen, 1987.; W.F. Van Gunsteren, H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, Groningen, 1987.
[21] Moret, M. A.; Pascutti, P. G.; Bisch, P. M.; Mundim, K. C., Stochastic molecular optimization using generalized simulated annealing, Journal of Computational Chemistry, 19, 647-657 (1998)
[22] Connoly, M. L., Solvent-accessible surface of proteins and nucleic acids, Science, 221, 4612, 709-713 (1983)
[23] Wesson, L.; Eisenberg, D., Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Science, 1, 227-235 (1992)
[24] A.W. Sousa da Silva, W.F. Vranken, E.D. Laue, ACPYPE - AnteChamber PYthon Parser interface, submitted for publication.; A.W. Sousa da Silva, W.F. Vranken, E.D. Laue, ACPYPE - AnteChamber PYthon Parser interface, submitted for publication.
[25] Scuettelkopf, A. W.; van Aalten, D. M.F., PRODRG - a tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallographica, D60, 1335-1363 (2004)
[26] Dunbrack, R. L., Rotamer libraries in the 21st century, Current Opinion in Structural Biology, 12, 431-440 (2002)
[27] Pettersen, E. F., UCSF Chimera – a visualization system for exploratory research and analysis, Journal of Computational Chemistry, 25, 1605-1612 (2004)
[28] Brooks, R. E., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, 4, 187-217 (1983)
[29] Berendsen, H. J.C.; Van der Spoel, D.; van Drunen, R., GROMACS: a message-passing parallel molecular dynamics implementation, Computer Physics Communications, 91, 43-56 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.