×

CalcHEP 3.4 for collider physics within and beyond the standard model. (English) Zbl 1286.81009

Summary: We present version 3.4 of the CalcHEP software package which is designed for effective evaluation and simulation of high energy physics collider processes at parton level.
The main features of CalcHEP are the computation of Feynman diagrams, integration over multi-particle phase space and event simulation at parton level. The principle attractive key-points along these lines are that it has: (a) an easy startup and usage even for those who are not familiar with CalcHEP and programming; (b) a friendly and convenient graphical user interface (GUI); (c) the option for the user to easily modify a model or introduce a new model by either using the graphical interface or by using an external package with the possibility of cross checking the results in different gauges; (d) a batch interface which allows to perform very complicated and tedious calculations connecting production and decay modes for processes with many particles in the final state.
With this features set, CalcHEP can efficiently perform calculations with a high level of automation from a theory in the form of a Lagrangian down to phenomenology in the form of cross sections, parton level event simulation and various kinematical distributions.
In this paper we report on the new features of CalcHEP 3.4 which improves the power of our package to be an effective tool for the study of modern collider phenomenology.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81V70 Many-body theory; quantum Hall effect
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[2] Tanaka, H.; Kaneko, T.; Shimizu, Y., Numerical calculation of Feynman amplitudes for electroweak theories and an application to \(e + e - \to W + W -\) gamma, Comput. Phys. Comm., 64, 149-166 (1991)
[3] Yuasa, F., Automatic computation of cross sections in HEP: status of GRACE system, Progr. Theoret. Phys. Suppl., 138, 18-23 (2000)
[4] Belanger, G., Automatic calculations in high energy physics and grace at one-loop, Phys. Rept., 430, 117-209 (2006), arXiv:hep-ph/0308080, http://dx.doi.org/10.1016/j.physrep.2006.02.001
[6] Boos, E., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Methods A, 534, 250-259 (2004), arXiv:hep-ph/0403113, http://dx.doi.org/10.1016/j.nima.2004.07.096
[7] Kublbeck, J.; Bohm, M.; Denner, A., Feyn arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Comm., 60, 165-180 (1990), http://dx.doi.org/10.1016/0010-4655(90)90001-H
[8] Hahn, T., Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Comm., 140, 418-431 (2001), arXiv:hep-ph/0012260, http://dx.doi.org/10.1016/S0010-4655(01)00290-9 · Zbl 0994.81082
[9] Hahn, T., Automatic loop calculations with FeynArts, FormCalc, and LoopTools, Nuclear Phys. Proc. Suppl., 89, 231-236 (2000), arXiv:hep-ph/0005029, http://dx.doi.org/10.1016/S0920-5632(00)00848-3
[10] Maltoni, F.; Stelzer, T., MadEvent: automatic event generation with MadGraph, J. High Energy Phys., 02, 027 (2003)
[11] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., MadGraph 5: going beyond, J. High Energy Phys., 06, 128 (2011), arXiv:1106.0522, http://dx.doi.org/10.1007/JHEP06(2011)128 · Zbl 1298.81362
[12] Kanaki, A.; Papadopoulos, C. G., HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Comm., 132, 306-315 (2000), arXiv:hep-ph/0002082, http://dx.doi.org/10.1016/S0010-4655(00)00151-X · Zbl 1031.81507
[13] Papadopoulos, C. G., PHEGAS: a phase space generator for automatic cross-section computation, Comput. Phys. Comm., 137, 247-254 (2001), arXiv:hep-ph/0007335, http://dx.doi.org/10.1016/S0010-4655(01)00163-1 · Zbl 0984.65005
[14] Cafarella, A.; Papadopoulos, C. G.; Worek, M., Helac-Phegas: a generator for all parton level processes, Comput. Phys. Comm., 180, 1941-1955 (2009), arXiv:0710.2427, http://dx.doi.org/10.1016/j.cpc.2009.04.023
[17] Gleisberg, T., SHERPA 1.alpha, a proof-of-concept version, J. High Energy Phys., 02, 056 (2004), arXiv:hep-ph/0311263, http://dx.doi.org/10.1088/1126-6708/2004/02/056
[18] Gleisberg, T., Event generation with SHERPA 1.1, J. High Energy Phys., 02, 007 (2009), arXiv:0811.4622, http://dx.doi.org/10.1088/1126-6708/2009/02/007
[21] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., micromegas: a program for calculating the relic density in the mssm, Comput. Phys. Comm., 149, 103-120 (2002) · Zbl 1196.81048
[22] Belanger, G.; Boudjema, F.; Hugonie, C.; Pukhov, A.; Semenov, A., Relic density of dark matter in the NMSSM, JCAP, 0509, 001 (2005), arXiv:hep-ph/0505142, http://dx.doi.org/10.1088/1475-7516/2005/09/001
[23] Belanger, G.; Boudjema, F.; Kraml, S.; Pukhov, A.; Semenov, A., Relic density of neutralino dark matter in the MSSM with CP violation, Phys. Rev. D, 73, 115007 (2006), arXiv:hep-ph/0604150, http://dx.doi.org/10.1103/PhysRevD.73.115007
[24] Belyaev, A.; Leroy, C.; Mehdiyev, R.; Pukhov, A., Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model, J. High Energy Phys., 09, 005 (2005)
[26] Belyaev, A., Technicolor walks at the LHC, Phys. Rev. D, 79, 035006 (2009), arXiv:0809.0793, http://dx.doi.org/10.1103/PhysRevD.79.035006
[27] Belanger, G.; Kakizaki, M.; Pukhov, A., Dark matter in UED: the role of the second KK level, JCAP, 1102, 009 (2011), arXiv:1012.2577, http://dx.doi.org/10.1088/1475-7516/2011/02/009
[30] Allanach, B. C., Softsusy: a c++ program for calculating supersymmetric spectra, Comput. Phys. Comm., 143, 305-331 (2002) · Zbl 1009.81588
[31] Porod, W., Spheno, a program for calculating supersymmetric spectra, susy particle decays and susy particle production at e+ e−colliders, Comput. Phys. Comm., 153, 275-315 (2003)
[32] Ellwanger, U.; Hugonie, C., NMSPEC: a Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Comm., 177, 399-407 (2007), arXiv:hep-ph/0612134, http://dx.doi.org/10.1016/j.cpc.2007.05.001
[33] Lee, J.; Pilaftsis, A.; Carena, M. S.; Choi, S.; Drees, M., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP violation, Comput. Phys. Comm., 156, 283-317 (2004), arXiv:hep-ph/0307377, http://dx.doi.org/10.1016/S0010-4655(03)00463-6
[35] Belanger, G.; Christensen, N. D.; Pukhov, A.; Semenov, A., SLHAplus: a library for implementing extensions of the standard model, Comput. Phys. Comm., 182, 763-774 (2011), arXiv:1008.0181, http://dx.doi.org/10.1016/j.cpc.2010.10.025 · Zbl 1214.81322
[36] Semenov, A., LanHEP — a package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Comm., 180, 431-454 (2009), arXiv:0805.0555, http://dx.doi.org/10.1016/j.cpc.2008.10.012 · Zbl 1198.81021
[37] Christensen, N. D.; Duhr, C., FeynRules — Feynman rules made easy, Comput. Phys. Comm., 180, 1614-1641 (2009), arXiv:0806.4194, http://dx.doi.org/10.1016/j.cpc.2009.02.018
[39] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., micrOMEGAs2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Comm., 176, 367-382 (2007), arXiv:hep-ph/0607059, http://dx.doi.org/10.1016/j.cpc.2006.11.008 · Zbl 1196.81050
[40] Belanger, G., Indirect search for dark matter with micrOMEGAs2.4, Comput. Phys. Comm., 182, 842-856 (2011), arXiv:1004.1092, http://dx.doi.org/10.1016/j.cpc.2010.11.033 · Zbl 1218.85001
[43] Sjostrand, T., High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Comm., 82, 74-90 (1994), http://dx.doi.org/10.1016/0010-4655(94)90132-5
[44] Skands, P. Z., SUSY Les Houches Accord: interfacing SUSY spectrum calculators, decay packages, and event generators, J. High Energy Phys., 07, 036 (2004), arXiv:hep-ph/0311123, http://dx.doi.org/10.1088/1126-6708/2004/07/036
[45] Allanach, B. C., SUSY Les Houches Accord 2, Comput. Phys. Comm., 180, 8-25 (2009), arXiv:0801.0045, http://dx.doi.org/10.1016/j.cpc.2008.08.004
[47] Lepage, G. P., A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192 (1978), http://dx.doi.org/10.1016/0021-9991(78)90004-9 · Zbl 0377.65010
[48] Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B., Numerical recipes in C: the art of scientific computing (1999), Cambridge University Press · Zbl 0845.65001
[49] Kawabata, S., A new version of the multidimensional integration and event generation package BASES/SPRING, Comput. Phys. Comm., 88, 309-326 (1995), http://dx.doi.org/10.1016/0010-4655(95)00028-E · Zbl 0888.65019
[50] Alwall, J., A standard format for Les Houches event files, Comput. Phys. Comm., 176, 300-304 (2007), arXiv:hep-ph/0609017, http://dx.doi.org/10.1016/j.cpc.2006.11.010
[51] Belov, S.; Dudko, L.; Kekelidze, D.; Sherstnev, A., HepML, an XML-based format for describing simulated data in high energy physics, Comput. Phys. Comm., 181, 1758-1768 (2010), arXiv:1001.2576, http://dx.doi.org/10.1016/j.cpc.2010.06.026 · Zbl 1219.82007
[52] Pukhov, A., Batch calculations in CalcHEP, Nucl. Instrum. Methods A, 502, 573-575 (2003)
[53] Alwall, J.; Demin, P.; de Visscher, S.; Frederix, R.; Herquet, M., MadGraph/MadEvent v4: the new web generation, J. High Energy Phys., 0709, 028 (2007), arXiv:0706.2334, http://dx.doi.org/10.1088/1126-6708/2007/09/028
[54] Bjorken, J.; Drell, S., Relativistic quantum mechanics, (International Series in Pure and Applied Physics (1964), McGraw-Hill) · Zbl 0184.54201
[56] Spira, M., QCD effects in Higgs physics, Fortsch. Phys., 46, 203-284 (1998) · Zbl 0988.81129
[57] Djouadi, A., The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept., 457, 1-216 (2008), arXiv:hep-ph/0503172, http://dx.doi.org/10.1016/j.physrep.2007.10.004
[58] Djouadi, A., The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept., 459, 1-241 (2008), arXiv:hep-ph/0503173, http://dx.doi.org/10.1016/j.physrep.2007.10.005
[59] Baikov, P.; Chetyrkin, K., Higgs Decay into Hadrons to Order alpha**5(s), Phys. Rev. Lett., 97, 061803 (2006), arXiv:hep-ph/0604194, http://dx.doi.org/10.1103/PhysRevLett.97.061803
[60] Muhlleitner, M.; Spira, M., Higgs Boson production via gluon fusion: squark loops at NLO QCD, Nuclear Phys. B, 790, 1-27 (2008), arXiv:hep-ph/0612254, http://dx.doi.org/10.1016/j.nuclphysb.2007.08.011
[61] Chetyrkin, K. G.; Kniehl, B. A.; Steinhauser, M.; Bardeen, W. A., Effective QCD interactions of CP odd Higgs bosons at three loops, Nucl. Phys. B, 535, 3-18 (1998), hep-ph/9807241, http://dx.doi.org/10.1016/S0550-3213(98)00594-X
[64] Semenov, A., LanHEP: a package for automatic generation of Feynman rules from the Lagrangian, Comput. Phys. Comm., 115, 124-139 (1998) · Zbl 1006.81501
[65] Barbieri, R.; Hall, L. J.; Rychkov, V. S., Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D, 74, 015007 (2006), arXiv:hep-ph/0603188, http://dx.doi.org/10.1103/PhysRevD.74.015007
[66] Lopez Honorez, L.; Yaguna, C. E., The inert doublet model of dark matter revisited, J. High Energy Phys., 09, 046 (2010), arXiv:1003.3125, http://dx.doi.org/10.1007/JHEP09(2010)046 · Zbl 1291.83213
[67] Kublbeck, J.; Eck, H.; Mertig, R., Computeralgebraic generation and calculation of Feynman graphs using FeynArts and FeynCalc, Nuclear Phys. Proc. Suppl., 29A, 204-208 (1992)
[68] de Aquino, P.; Link, W.; Maltoni, F.; Mattelaer, O.; Stelzer, T., ALOHA: automatic libraries of helicity amplitudes for Feynman diagram computations, Comput. Phys. Comm., 183, 2254-2263 (2012), arXiv:1108.2041, http://dx.doi.org/10.1016/j.cpc.2012.05.004
[69] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O., UFO — the universal FeynRules output, Comput. Phys. Comm., 183, 1201-1214 (2012), arXiv:1108.2040, http://dx.doi.org/10.1016/j.cpc.2012.01.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.