×

Hierarchical Kendall copulas: properties and inference. (English. French summary) Zbl 1349.62172

Summary: While there is substantial need for dependence models in higher dimensions, most existing models quickly become rather restrictive and barely balance parsimony and flexibility. Hierarchical constructions may improve on that by grouping variables in different levels. In this paper, the new class of hierarchical Kendall copulas is proposed and discussed. Hierarchical Kendall copulas are built up by flexible copulas specified for groups of variables, where aggregation is facilitated by the Kendall distribution function, the multivariate analog to the probability integral transform for univariate random variables. After deriving properties of the general model formulation, particular focus is given to inference techniques of hierarchical Kendall copulas with Archimedean components, for which closed-form analytical expressions can be derived. A substantive application to German stock returns finally shows that hierarchical Kendall copulas perform very well for real data, out-of- as well as in-sample.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62D05 Sampling theory, sample surveys
62E10 Characterization and structure theory of statistical distributions
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aas, Pair-copula constructions of multiple dependence, Insurance: Mathematics and Economics 44 pp 182– (2009) · Zbl 1165.60009
[2] Anjos, An application of Kendall distributions, Review of Business and Economics L pp 95– (2005)
[3] Arbenz, Copula based hierarchical risk aggregation through sample reordering, Insurance: Mathematics and Economics 51 pp 122– (2012) · Zbl 1284.91198
[4] Barbe, On Kendall’s process, Journal of Multivariate Analysis 58 pp 197– (1996) · Zbl 0862.60020 · doi:10.1006/jmva.1996.0048
[5] Brechmann, Sampling from hierarchical Kendall copulas, Journal de la Société Française de Statistique 154 pp 192– (2013)
[6] Brechmann, Truncated regular vines in high dimensions with applications to financial data, Canadian Journal of Statistics 40 pp 68– (2012) · Zbl 1274.62381 · doi:10.1002/cjs.10141
[7] Candelon, Backtesting value-at-risk: A GMM duration-based test, Journal of Financial Econometrics 9 pp 314– (2011) · doi:10.1093/jjfinec/nbq025
[8] Chakak, Bivariate contours of copula, Communications in Statistics-Simulation and Computation 29 pp 175– (2000) · Zbl 0968.62517 · doi:10.1080/03610910008813608
[9] Cherubini , U. Luciano , E. Vecchiato , W. 2004 Copula Methods in Finance · Zbl 1163.62081
[10] Christoffersen, Evaluating interval forecasts, International Economic Review 39 pp 841– (1998) · doi:10.2307/2527341
[11] Christoffersen, Backtesting value-at-risk: A duration-based approach, Journal of Financial Econometrics 2 pp 84– (2004) · doi:10.1093/jjfinec/nbh004
[12] Czado , C. Brechmann , E. C. Gruber , L. 2013 Selection of vine copulas Jaworski , P. Durante , F. Härdle , W. Copulae in Mathematical and Quantitative Finance
[13] Daul, The grouped t-copula with an application to credit risk, Risk 16 pp 73– (2003)
[14] Devroye , L. 1986 Non-Uniform Random Variate Generation · Zbl 0593.65005
[15] Dißmann, Selecting and estimating regular vine copulae and application to financial returns, Computational Statistics and Data Analysis 59 pp 52– (2013) · Zbl 1400.62114 · doi:10.1016/j.csda.2012.08.010
[16] Fang , K.-T. Kotz , S. Ng , K. 1990 Symmetric Multivariate and Related Distributions · Zbl 0699.62048
[17] Genest, Inference in multivariate Archimedean copulas, Test 20 pp 223– (2011) · Zbl 1274.62399 · doi:10.1007/s11749-011-0250-6
[18] Genest, De l’impossibilité de construire des lois à marges multidimensionnelles données à partir de copules, Comptes Rendus de l’Académie des Sciences, Series I, Mathematics 320 pp 723– (1995)
[19] Genest, Goodness-of-fit procedures for copula models based on the probability integral transform, Scandinavian Journal of Statistics 33 pp 337– (2006) · Zbl 1124.62028 · doi:10.1111/j.1467-9469.2006.00470.x
[20] Genest, Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association 88 pp 1034– (1993) · Zbl 0785.62032 · doi:10.1080/01621459.1993.10476372
[21] Genest, On the multivariate probability integral transformation, Statistics and Probability Letters 53 pp 391– (2001) · Zbl 0982.62056 · doi:10.1016/S0167-7152(01)00047-5
[22] Gonçalves, Maximum likelihood and the bootstrap for nonlinear dynamic models, Journal of Econometrics 119 pp 199– (2004) · Zbl 1337.62043 · doi:10.1016/S0304-4076(03)00204-5
[23] Gregory, In the core of correlation, Risk 17 pp 87– (2004)
[24] Grothe , O. Schmid , F. Schnieders , J. Segers , J. 2011 Measuring association between random vectors · Zbl 1278.62090
[25] Haas , M. 2001 New methods in backtesting
[26] Hastie , T. Tibshirani , R. Friedman , J. H. 2009 The Elements of Statistical Learning: Data Mining, Inference, and Prediction · Zbl 1273.62005
[27] Hering , C. 2011 Estimation techniques and goodness-of-fit tests for certain copula classes in large dimensions
[28] Hofert , M. 2010 Construction and sampling of nested Archimedean copulas Copula Theory and Its Applications Jaworski , P. Durante , F. Härdle , W. Rychlik , T. · Zbl 1232.91690
[29] Hofert, Efficiently sampling nested Archimedean copulas, Computational Statistics and Data Analysis 55 pp 57– (2011) · Zbl 1247.62132 · doi:10.1016/j.csda.2010.04.025
[30] Hofert, Likelihood inference for Archimedean copulas in high dimensions under known margins, Journal of Multivariate Analysis 110 pp 133– (2012) · Zbl 1244.62073 · doi:10.1016/j.jmva.2012.02.019
[31] Hofert, Densities of nested Archimedean copulas, Journal of Multivariate Analysis 118 pp 37– (2013) · Zbl 1277.62138 · doi:10.1016/j.jmva.2013.03.006
[32] Hofert, CDO pricing with nested Archimedean copulas, Quantitative Finance 11 pp 775– (2011) · Zbl 1213.91074 · doi:10.1080/14697680903508479
[33] Imlahi, Estimación de la curva mediana de una cópula C(x1,...,xm), Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas 93 pp 241– (1999)
[34] Joe, Multivariate Models and Dependence Concepts (1997) · Zbl 0990.62517 · doi:10.1201/b13150
[35] Joe , H. Xu , J. 1996 The estimation method of inference functions for margins for multivariate models
[36] Kupiec, Techniques for verifying the accuracy of risk measurement models, The Journal of Derivatives 3 pp 73– (1995) · doi:10.3905/jod.1995.407942
[37] Mantegna, Hierarchical structure in financial markets, European Physical Journal B 11 pp 193– (1999) · doi:10.1007/s100510050929
[38] Marco, On the construction of multivariate distributions with given nonoverlapping multivariate marginals, Statistics and Probability Letters 15 pp 259– (1992) · Zbl 0756.62025 · doi:10.1016/0167-7152(92)90160-7
[39] McLeish, The Theory and Applications of Statistical Inference Functions (1988) · Zbl 0654.62001 · doi:10.1007/978-1-4612-3872-0
[40] McNeil, Multivariate Archimedean copulas, d-monotone functions and 1-norm symmetric distributions, Annals of Statistics 37 pp 3059– (2009) · Zbl 1173.62044 · doi:10.1214/07-AOS556
[41] Nelsen, Kendall distribution functions, Statistics and Probability Letters 65 pp 263– (2003) · Zbl 1048.62058 · doi:10.1016/j.spl.2003.08.002
[42] Okhrin, On the structure and estimation of hierarchical archimedean copulas, Journal of Econometrics 173 pp 189– (2013) · Zbl 1443.62137 · doi:10.1016/j.jeconom.2012.12.001
[43] Politis, The stationary bootstrap, Journal of the American Statistical Association 89 pp 1303– (1994) · Zbl 0814.62023 · doi:10.1080/01621459.1994.10476870
[44] Salvadori, On the return period and design in a multivariate framework, Hydrology and Earth System Sciences 15 pp 3293– (2011) · doi:10.5194/hess-15-3293-2011
[45] Savu, Hierarchical Archimedean copulas, Quantitative Finance 10 pp 295– (2010) · Zbl 1270.91086 · doi:10.1080/14697680902821733
[46] Schepsmeier , U. Stöber , J. Brechmann , E. C. Gräler , B. 2013
[47] Sklar, Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de L’Université de Paris 8 pp 229– (1959)
[48] Wang, Model selection and semiparametric inference for bivariate failure-time data, Journal of the American Statistical Association 95 pp 62– (2000) · Zbl 0996.62091 · doi:10.1080/01621459.2000.10473899
[49] Wu, Simulating from exchangeable Archimedean copulas, Communications in Statistics-Simulation and Computation 36 pp 1019– (2007) · Zbl 1126.62041 · doi:10.1080/03610910701539781
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.