×

Numerical simulation of the Graetz problem in ducts with viscoelastic FENE-P fluids. (English) Zbl 1290.76063

Summary: A numerical investigation of heat transfer with viscoelastic fluid based on the FENE-P model in straight pipes of circular and some non-circular cross-sections is carried out to analyze the influence of the rheological parameters on heat transfer enhancement with negligible axial heat conduction and viscous dissipation by assuming temperature-independent model parameters. Numerical simulation is conducted using the finite element based software Polyflow and results are compared with analytical and semi-analytical solutions available in the literature for the 2D axisymmetric pipes. The analysis considers a constant wall heat flux boundary condition and shows that an increase in fluid elasticity raised the normalized heat transfer coefficient due to the increased level of shear-thinning behavior. But increasing the extensibility parameter \(L^2\) leads to a decrease in Nusselt number. Nusselt number distribution in the entrance region of tubes of equilateral triangular, square and rectangular cross-sections is reported for the first time for non-linear viscoelastic fluids of the FENE-P type.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics

Software:

POLYFLOW
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shah, R.; London, A. L., Laminar flow forced convection in ducts (1978), Academic Press: Academic Press New York.
[2] Shah, R. K.; Bhatti, M. S., Laminar convective heat transfer in ducts, (Kakac, S.; Shah, R. K.; Aung, W., Handbook of single-phase convective heat transfer (1987), Wiley: Wiley New York), [chapter 3]
[3] Hartnett, J. P.; Kostic, M., Heat transfer to viscoelastic fluid in laminar flow through a rectangular channel, Int J Heat Mass Transfer, 28, 1147-1155 (1985)
[4] Oliveira, P. J.; Pinho, F. T., Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids, J Fluid Mech, 387, 271-280 (1999) · Zbl 0938.76004
[5] Coelho, P. M.; Pinho, F. T.; Oliveira, P. J., Fully developed forced convection of the Phan-Thien-Tanner fluid in ducts with a constant wall temperature, Int J Heat Mass Transfer, 45, 1413-1423 (2002) · Zbl 1034.76053
[6] Coelho, P. M.; Pinho, F. T.; Oliveira, P. J., Thermal entry flow for a viscoelastic fluid: the Graetz problem for the PTT model, Int J Heat Mass Transfer, 46, 3865-3880 (2003) · Zbl 1121.76304
[7] Filali, A.; Khezzar, L.; Siginer, D. A.; Nemouchi, Z., Graetz problem with non-linear viscoelastic fluids in non-circular tubes, Int J Therm Sci, 61, 50-60 (2012)
[8] Berti, S.; Boffetta, G., Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow, Phys Rev E, 82, 036314 (2010)
[9] Goddard, C.; Hess, O., Low Reynolds number turbulence in nonlinear Maxwell-model fluids, Phys Rev E, 81, 3 (2010)
[10] Gottlieb, D.; Hussaini, M. Y.; Orszag, S. A., Introduction, theory and applications of spectral methods, (Voigt, R. G.; Gottlieb, D.; Hussaini, M. Y., Spectral methods for partial differential equations (1984), SIAM: SIAM Philadelphia (PA)), l-54
[11] Karniadakis, G. E., Numerical simulation of forced convection heat transfer from a cylinder in cross flow, Int J Heat Mass Transfer, 31, 107-118 (1988)
[12] Lim, F. J.; Schowalter, W. R., Pseudospectral analysis of the stability of pressure-driven flow of a Giesekus fluid between parallel planes, J Non-Newton Fluid Mech, 26, 135-142 (1987)
[13] Pilitsis, S.; Beris, A. N., Pseudospectral calculations of viscoelastic flow in a periodically constricted tube, Comput Methods Appl Mech Eng, 98, 307-328 (1992) · Zbl 0825.76612
[14] Pasquetti, R.; Xu, C. J., Comments on filter-based stabilization of spectral element methods, J Comput Phys, 182, 646-650 (2002) · Zbl 1090.76052
[15] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods in fluid dynamics (1988), Springer: Springer New York · Zbl 0658.76001
[16] Beris, A. N.; Armstrong, R. C.; Brown, R. A., Spectral/finite-element calculations of the flow of a Maxwell fluid between eccentric rotating cylinders, J Non-Newton Fluid Mech, 22, 129-167 (1987) · Zbl 0609.76010
[17] Pilitsis, S.; Beris, A. N., Viscoelastic flow in an undulating tube. Part II: effects of high elasticity, large amplitude and inertia, J Non-Newton Fluid Mech, 39, 375-405 (1991) · Zbl 0728.76006
[18] Peterlin, A., Hydrodynamics of macromolecules in a velocity field with longitudinal gradient, J Polym Sci B: Polym Lett, 4, 287-291 (1966)
[19] Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O., Dynamics of polymeric liquids kinetic theory, vol. 2 (1987), Wiley: Wiley New York
[20] Purnode, B.; Crochet, M. J., Polymer solution characterization with the FENE-P model, J Non-Newton Fluid Mech, 77, 1-20 (1998) · Zbl 0955.76005
[21] Oliviera, P. J., An exact solution for tube and slit flow of a FENE-P fluid, Acta Mech, 158, 157-167 (2002) · Zbl 1064.76011
[22] Oliveira, P. J.; Coelho, P. M.; Pinho, F. T., The Graetz problem with viscous dissipation for FENE-P fluids, J Non-Newton Fluid Mech, 121, 69-72 (2004) · Zbl 1079.76015
[24] Nóbrega, J. M.; Pinho, F. T.; Oliveira, P. J.; Carneiro, O. S., Accounting for temperature-dependent properties in viscoelastic duct flows, Int J Heat Mass Transfer, 47, 1141-1158 (2004) · Zbl 1045.76515
[25] Bird, R. B.; Dotson, P. J.; Johnson, N. L., Polymer solution rheology based on a finitely extensible bead-spring chain model, J Non-Newton Fluid Mech, 7, 213-235 (1980) · Zbl 0432.76012
[26] Guénette, R.; Fortin, M., A new mixed finite element method for computing viscoelastic flows, J Non-Newton Fluid Mech, 60, 27-52 (1995)
[27] White, F. M., Viscous fluid flow (2006), McGraw Hill International New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.