×

Using the suspension balance model in a finite-element flow solver. (English) Zbl 1290.76153

Summary: A suspension balance model (SBM) is implemented to describe the shear-driven migration of particles in noncolloidal suspensions in the context of a finite element (FE) solver. Before developing the FE methodology, the SBM is analyzed in the context of a rigorous two-phase averaging procedure, in which the traditional SBM model can be thought of as an approximate closure relationship for the rigorous two-phase equations. It is shown that the standard SBM equations are inconsistent, which is demonstrated analytically for the case of Couette flow. A FE model is developed using a corrected set of SBM equations, and the numerical techniques needed to handle the anisotropic Q-tensor and FE stabilization are detailed. The resultant FE-SBM method is tested using a Couette geometry and compared with existing models and experiments. A high level of sensitivity of the particle migration to the chosen viscosity model is noted, as well as the influence of excess diffusion caused by the FE stabilization procedure. The FE-SBM method is also used in conjunction with an arbitrary Lagrangian-Eulerian formulation to simulate the deflection of the free surface in a Couette cell. Secondary flows are observed in the free-surface simulation results, and the underlying mechanisms driving these secondary flows are explored.

MSC:

76T20 Suspensions
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics

Software:

Aria
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Einstein, A., Zur Theorie der Brownschen Bewegung, Ann. Phys. (Leipzig), 19, 371-381 (1906) · JFM 37.0814.02
[2] Batchelor, G. K., The stress system in a suspension of force-free particles, J. Fluid Mech., 41, 545-570 (1970) · Zbl 0193.25702
[3] Batchelor, G. K., The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 01, 97-117 (1977)
[4] Brady, J. F.; Vicic, M., Normal stresses in colloidal dispersions, J. Rheol., 39, 3, 545-566 (1995)
[5] Bergenholtz, J.; Brady, J. F.; Vicic, M., The non-Newtonian rheology of dilute colloidal suspensions, J. Fluid Mech., 456, 239-275 (2002) · Zbl 1081.76601
[6] Morris, J. F., A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow, Rheol. Acta, 48, 8, 909-923 (2009)
[7] Fuchs, M.; Cates, M. E., Theory of nonlinear rheology and yielding of dense colloidal suspensions, Phys. Rev. Lett., 89, 24, 248304 (2002)
[8] Brader, J. M.; Cates, M. E.; Fuchs, M., First-principles constitutive equation for suspension rheology, Phys. Rev. Lett., 101, 13, 138301 (2008)
[9] Parsi, F.; Gadala-Maria, F., Fore-and-aft asymmetry in a concentrated suspension of solid spheres, J. Rheol., 31, 8, 725-732 (1987)
[10] Wagner, N. J.; Russel, W. B., Light scattering measurements of a hard-sphere suspension under shear, Phys. Fluids A, 2, 491 (1990)
[11] Phung, T. N.; Brady, J. F.; Bossis, G., Stokesian Dynamics simulation of Brownian suspensions, J. Fluid Mech., 313, 181-207 (1996)
[12] Foss, D. R.; Brady, J. F., Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation, J. Fluid Mech., 407, 167-200 (2000) · Zbl 0956.76092
[13] Morris, J. F.; Katyal, B., Microstructure from simulated Brownian suspension flows at large shear rate, Phys. Fluids, 14, 6, 1920-1937 (2002) · Zbl 1185.76267
[14] Sierou, A.; Brady, J. F., Rheology and microstructure in concentrated noncolloidal suspensions, J. Rheol., 46, 1031-1056 (2002)
[16] Clausen, J. R.; Reasor, D. A.; Aidun, C. K., The rheology and microstructure of concentrated noncolloidal suspensions of deformable particles, J. Fluid Mech., 685, 202-234 (2011) · Zbl 1241.76394
[17] Jeffrey, D. J.; Morris, J. F.; Brady, J. F., The pressure moments for two rigid spheres in low-Reynolds-number flow, Phys. Fluids A, 5, 10, 2317-2325 (1993) · Zbl 0797.76015
[18] Deboeuf, A.; Gauthier, G.; Martin, J.; Yurkovetsky, Y.; Morris, J. F., Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy, Phys. Rev. Lett., 102, 10, 108301 (2009)
[19] Yurkovetsky, Y.; Morris, J. F., Particle pressure in sheared Brownian suspensions, J. Rheol., 52, 1, 141-164 (2008)
[20] Stickel, J. J.; Powell, R. L., Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech., 37, 01, 129-149 (2005) · Zbl 1117.76066
[21] Segré, G.; Silberberg, A., Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation, J. Fluid Mech., 14, 01, 136-157 (1962) · Zbl 0118.43203
[22] Saffman, P. G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, 02, 385-400 (1965) · Zbl 0218.76043
[23] Gadala-Maria, F.; Acrivos, A., Shear-induced structure in a concentrated suspension of solid spheres, J. Rheol., 24, 6, 799 (1980)
[24] Leighton, D. T.; Acrivos, A., The shear-induced migration of particles in concentrated suspensions, J. Fluid Mech., 181, 415-439 (1987)
[26] Leighton, D.; Acrivos, A., Viscous resuspension, Chem. Eng. Sci., 41, 6, 1377-1384 (1986)
[27] Phillips, R. J.; Armstrong, R. C.; Brown, R. A.; Graham, A. L.; Abbott, J. R., A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration, Phys. Fluids A, 4, 30-40 (1992) · Zbl 0742.76009
[28] Fang, Z.; Mammoli, A. A.; Brady, J. F.; Ingber, M. S.; Mondy, L.; Graham, A. L., Flow-aligned tensor models for suspension flows, Int. J. Multiph. Flow, 28, 1, 137-166 (2002) · Zbl 1136.76500
[29] Morris, J. F.; Boulay, F., Curvilinear flows of noncolloidal suspensions: the role of normal stresses, J. Rheol., 43, 5, 1213-1237 (1999)
[30] Zarraga, I. E.; Hill, D. A.; Leighton, D. T., Normal stresses and free surface deformation in concentrated suspensions of noncolloidal spheres in a viscoelastic fluid, J. Rheol., 45, 1065-1084 (2001)
[31] Nott, P. R.; Brady, J. F., Pressure-driven suspension flow: simulation and theory, J. Fluid Mech., 275, 157-199 (1994) · Zbl 0925.76835
[32] Miller, R. M.; Morris, J. F., Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions, J. Non-Newton. Fluid Mech, 135, 2-3, 149-165 (2006) · Zbl 1195.76406
[33] Miller, R. M.; Singh, J. P.; Morris, J. F., Suspension flow modeling for general geometries, Chem. Eng. Sci., 64, 22, 4597-4610 (2009) · Zbl 1074.76061
[34] Drew, D. A., Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech., 15, 1, 261-291 (1983)
[35] Drew, D. A.; Lahey, R. T., Analytical modelling of multiphase flow, (Roco, M. C., Particulate Two-Phase Flows (1993), Butterworth-Heinemann: Butterworth-Heinemann Oxford)
[36] Jackson, R., Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid, Chem. Eng. Sci., 52, 15, 2457-2469 (1997)
[37] Lhuillier, D., Migration of rigid particles in non-Brownian viscous suspensions, Phys. Fluids, 21, 023302 (2009) · Zbl 1183.76304
[38] Nott, P. R.; Guazzelli, E.; Pouliquen, O., The suspension balance model revisited, Phys. Fluids, 23, 043304 (2011)
[40] Zarraga, I. E.; Hill, D. A.; Leighton, D. T., The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, J. Rheol., 44, 2, 185-220 (2000)
[41] Boyer, F.; Pouliquen, O.; Guazzelli, E., Dense suspension in rotating-rod flows: normal stresses and particle migration, under consideration for, J. Fluid Mech., 686, 5-25 (2011) · Zbl 1241.76008
[42] Anderson, T. B.; Jackson, R., Fluid mechanical description of fluidized beds. Equations of motion, Ind. Eng. Chem. Fundam., 6, 4, 527-539 (1967)
[43] Prosperetti, A., The average stress in incompressible disperse flow, Int. J. Multiph. Flow, 30, 7-8, 1011-1036 (2004) · Zbl 1136.76615
[44] Roscoe, R., On the rheology of a suspension of viscoelastic spheres in a viscous liquid, J. Fluid Mech., 28, 02, 273-293 (1967) · Zbl 0145.46304
[45] Keller, S. R.; Skalak, R., Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., 120, 27-47 (1982) · Zbl 0503.76142
[46] Clausen, J. R.; Aidun, C. K., Capsule dynamics and rheology in shear flow: particle pressure and normal stress, Phys. Fluids, 22, 123302 (2010)
[47] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Method. Appl. Meth., 59, 1, 85-99 (1986) · Zbl 0622.76077
[48] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Advan. Appl. Mech., 28, 1, 1-44 (1992) · Zbl 0747.76069
[49] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Method. Appl. Mech., 32, 1, 199-259 (1982) · Zbl 0497.76041
[50] Shakib, F.; Hughes, T. J.R., A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms, Comput. Method. Appl. Mech., 87, 1, 35-58 (1991) · Zbl 0760.76051
[51] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Method. Appl. Mech., 197, 1-4, 173-201 (2007) · Zbl 1169.76352
[52] Lee, R. L.; Gresho, P. M.; Sani, R. L., Smoothing techniques for certain primitive variable solutions of the Navier-Stokes equations, Int. J. Numer. Meth. Eng., 14, 12, 1785-1804 (1979) · Zbl 0426.76035
[53] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Method. Appl. Mech., 29, 3, 329-349 (1981) · Zbl 0482.76039
[54] Donea, J.; Giuliani, S.; Halleux, J. P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Method. Appl. Mech., 33, 1, 689-723 (1982) · Zbl 0508.73063
[55] Abbott, J. R.; Tetlow, N.; Graham, A. L.; Altobelli, S. A.; Fukushima, E.; Mondy, L. A.; Stephens, T. S., Experimental observations of particle migration in concentrated suspensions: Couette flow, J. Rheol., 35, 773 (1991)
[56] Tetlow, N.; Graham, A. L.; Ingber, M. S.; Subia, S. R.; Mondy, L. A.; Altobelli, S. A., Particle migration in a Couette apparatus: experiment and modeling, J. Rheol., 42, 307 (1998)
[57] Krieger, I. M.; Dougherty, T. J., A mechanism for non-Newtonian flow in suspensions of rigid spheres, J. Rheol., 3, 1, 137-152 (1959) · Zbl 0100.21502
[58] Ramachandran, A.; Leighton, D. T., The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions, J. Fluid Mech., 603, 207-243 (2008) · Zbl 1151.76609
[59] Zhang, D. Z.; Prosperetti, A., Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions* 1, Int. J. Multiph. Flow, 23, 3, 425-453 (1997) · Zbl 1135.76590
[60] Zhang, D. Z.; Prosperetti, A., Averaged equations for inviscid disperse two-phase flow, J. Fluid Mech., 267, 185-219 (1994) · Zbl 0820.76090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.