×

Light meson physics from maximally twisted mass lattice QCD. (English) Zbl 1290.81160

Summary: We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for \(N_{f} = 2\) mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range \(280 \lesssim m_{PS} \lesssim 650\) MeV we control the major systematic effects of our calculation. This enables us to confront our \(N_{f} = 2\) data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T25 Quantum field theory on lattices
81V22 Unified quantum theories
81R25 Spinor and twistor methods applied to problems in quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory

Software:

tmLQCD; R; Chroma
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] K. Jansen, Lattice QCD: a critical status report, PoS(LATTICE 2008)010 [arXiv:0810.5634] [SPIRES].
[2] E.E. Scholz, Light hadron masses and decay constants, arXiv:0911.2191 [SPIRES].
[3] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices (I): first experiences and physics results, JHEP02 (2007) 056 [hep-lat/0610059] [SPIRES].
[4] RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev.D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].
[5] JLQCD collaboration, S. Aoki et al., T wo-flavor QCD simulation with exact chiral symmetry, Phys. Rev.D 78 (2008) 014508 [arXiv:0803.3197] [SPIRES].
[6] JLQCD and TWQCD collaboration, J. Noaki et al., Convergence of the chiral expansion in two-flavor lattice QCD, Phys. Rev. Lett.101 (2008) 202004 [arXiv:0806.0894] [SPIRES].
[7] S. Dürr et al., Ab-initio determination of light hadron masses, Science322 (2008) 1224 [arXiv:0906.3599] [SPIRES].
[8] PACS-CS collaboration, S. Aoki et al., Physical point simulation in 2 + 1 flavor lattice QCD, Phys. Rev.D 81 (2010) 074503 [arXiv:0911.2561] [SPIRES].
[9] PACS-CS collaboration, K.I. Ishikawa et al., SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2 + 1 flavor lattice QCD, Phys. Rev.D 80 (2009) 054502 [arXiv:0905.0962] [SPIRES].
[10] A. Bazavov et al., Full nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys.82 (2010) 1349 [arXiv:0903.3598] [SPIRES].
[11] Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP08 (2001) 058 [hep-lat/0101001] [SPIRES].
[12] R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement, JHEP08 (2004) 007 [hep-lat/0306014] [SPIRES].
[13] R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II: four-quark operators, JHEP10 (2004) 070 [hep-lat/0407002] [SPIRES].
[14] ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett.B 650 (2007) 304 [hep-lat/0701012] [SPIRES].
[15] ETM collaboration, B. Blossier et al., Light quark masses and pseudoscalar decay constants from Nf =2 lattice QCD with twisted mass fermions, JHEP04 (2008) 020 [arXiv:0709.4574] [SPIRES].
[16] K. Cichy, J. Gonzalez Lopez, K. Jansen, A. Kujawa and A. Shindler, Twisted mass, overlap and creutz fermions: cut-off effects at tree-level of perturbation theory, Nucl. Phys.B 800 (2008) 94 [arXiv:0802.3637] [SPIRES].
[17] ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun.179 (2008) 695 [arXiv:0803.0224] [SPIRES].
[18] ETM collaboration, C. Alexandrou et al., Light baryon masses with dynamical twisted mass fermions, Phys. Rev.D 78 (2008) 014509 [arXiv:0803.3190] [SPIRES].
[19] ETM collaboration, K. Jansen, C. Michael and C. Urbach, The η′ meson from lattice QCD, Eur. Phys. J.C 58 (2008) 261 [arXiv:0804.3871] [SPIRES].
[20] A. Shindler, Twisted mass lattice QCD, Phys. Rept.461 (2008) 37 [arXiv:0707.4093] [SPIRES].
[21] ETM collaboration, B. Blossier et al., Pseudoscalar decay constants of kaon and D-mesons from Nf =2 twisted mass Lattice QCD, JHEP07 (2009) 043 [arXiv:0904.0954] [SPIRES].
[22] ETM collaboration, K. Jansen, C. McNeile, C. Michael, C. Urbach and f.t.E. Collaboration, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev.D 80 (2009) 054510 [arXiv:0906.4720] [SPIRES].
[23] ETM collaboration, C. McNeile, C. Michael and C. Urbach, The omega-rho meson mass splitting and mixing from lattice QCD, Phys. Lett.B 674 (2009) 286 [arXiv:0902.3897] [SPIRES].
[24] B. Blossier et al., A proposal for B-physics on current lattices, JHEP04 (2010) 049 [arXiv:0909.3187] [SPIRES]. · Zbl 1272.81189
[25] K. Jansen and A. Shindler, The ϵ-regime of chiral perturbation theory with Wilson-type fermions, arXiv:0911.1931 [SPIRES].
[26] XLF collaboration, K. Jansen, A. Shindler, C. Urbach and I. Wetzorke, Scaling test for Wilson twisted mass QCD, Phys. Lett.B 586 (2004) 432 [hep-lat/0312013] [SPIRES].
[27] XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Light quarks with twisted mass fermions, Phys. Lett.B 619 (2005) 184 [hep-lat/0503031] [SPIRES].
[28] XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Quenched scaling of Wilson twisted mass fermions, JHEP09 (2005) 071 [hep-lat/0507010] [SPIRES].
[29] A.M. Abdel-Rehim, R. Lewis and R.M. Woloshyn, Spectrum of quenched twisted mass lattice QCD at maximal twist, Phys. Rev.D 71 (2005) 094505 [hep-lat/0503007] [SPIRES].
[30] R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, JHEP04 (2006) 038 [hep-lat/0503034] [SPIRES].
[31] XLF collaboration, K. Jansen et al., Flavour breaking effects of Wilson twisted mass fermions, Phys. Lett.B 624 (2005) 334 [hep-lat/0507032] [SPIRES].
[32] R. Frezzotti and G. Rossi, O(a2) cutoff effects in Wilson fermion simulations, PoS(LATTICE 2007)277 [arXiv:0710.2492] [SPIRES].
[33] P. Dimopoulos, R. Frezzotti, C. Michael, G.C. Rossi and C. Urbach, O(a2) cutoff effects in lattice Wilson fermion simulations, Phys. Rev.D 81 (2010) 034509 [arXiv:0908.0451] [SPIRES].
[34] ETM collaboration, C. Urbach, Lattice QCD with two light Wilson quarks and maximally twisted mass, PoS(LATTICE 2007)022 [arXiv:0710.1517] [SPIRES].
[35] ETM collaboration, P. Dimopoulos, R. Frezzotti, G. Herdoiza, C. Urbach and U. Wenger, Scaling and low energy constants in lattice QCD with Nf =2 maximally twisted Wilson quarks, PoS(LATTICE 2007)102 [arXiv:0710.2498] [SPIRES].
[36] ETM collaboration, P. Dimopoulos et al., Scaling and chiral extrapolation of pion mass and decay constant with maximally twisted mass QCD, PoS(LATTTICE 2008)103 [arXiv:0810.2873] [SPIRES].
[37] C.W. Bernard et al., Finite size and quark mass effects on the QCD spectrum with two flavors, Phys. Rev.D 48 (1993) 4419 [hep-lat/9305023] [SPIRES].
[38] CP-PACS collaboration, Y. Namekawa et al., Light hadron spectroscopy in two-flavor QCD with small sea quark masses, Phys. Rev.D 70 (2004) 074503 [hep-lat/0404014] [SPIRES].
[39] JLQCD collaboration, S. Aoki et al., Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks, Phys. Rev.D 68 (2003) 054502 [hep-lat/0212039] [SPIRES].
[40] P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1, Nucl. Phys.B 212 (1983) 1 [SPIRES].
[41] F. Farchioni et al., Exploring the phase structure of lattice QCD with twisted mass quarks, Nucl. Phys. Proc. Suppl.140 (2005) 240 [hep-lat/0409098] [SPIRES].
[42] F. Farchioni et al., The phase structure of lattice QCD with Wilson quarks and renormalization group improved gluons, Eur. Phys. J.C 42 (2005) 73 [hep-lat/0410031] [SPIRES].
[43] R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and αs in SU(2) Yang-Mills theory, Nucl. Phys.B 411 (1994) 839 [hep-lat/9310022] [SPIRES].
[44] S. Weinberg, Phenomenological lagrangians, PhysicaA 96 (1979) 327 [SPIRES].
[45] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys.158 (1984) 142 [SPIRES].
[46] J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys.B 250 (1985) 465 [SPIRES].
[47] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett.B 667 (2008) 1 [SPIRES].
[48] R. Baron et al., Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks, JHEP06 (2010) 111 [arXiv:1004.5284] [SPIRES]. · Zbl 1288.81140
[49] T. Yoshie, Making use of the International Lattice Data Grid, PoS(LATTICE 2008)019 [arXiv:0812.0849] [SPIRES].
[50] C. Urbach, K. Jansen, A. Shindler and U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning, Comput. Phys. Commun.174 (2006) 87 [hep-lat/0506011] [SPIRES].
[51] K. Jansen and C. Urbach, tmLQCD: a program suite to simulate Wilson Twisted mass Lattice QCD, Comput. Phys. Commun.180 (2009) 2717 [arXiv:0905.3331] [SPIRES]. · Zbl 1197.81172
[52] H.B. Meyer et al., Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD, Comput. Phys. Commun.176 (2007) 91 [hep-lat/0606004] [SPIRES].
[53] G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys.B 445 (1995) 81 [hep-lat/9411010] [SPIRES].
[54] P. Dimopoulos et al., Renormalisation of quark bilinears with Nf=2 Wilson fermions and tree-level improved gauge action, PoS(LATTICE 2007)241 [arXiv:0710.0975] [SPIRES].
[55] ETM collaboration, C. Alexandrou et al., The low-lying baryon spectrum with two dynamical twisted mass fermions, Phys. Rev.D 80 (2009) 114503 [arXiv:0910.2419] [SPIRES].
[56] F. Farchioni et al., Twisted mass quarks and the phase structure of lattice QCD, Eur. Phys. J.C 39 (2005) 421 [hep-lat/0406039] [SPIRES].
[57] F. Farchioni et al., Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions, Phys. Lett.B 624 (2005) 324 [hep-lat/0506025] [SPIRES].
[58] S.R. Sharpe and J.M.S. Wu, The phase diagram of twisted mass lattice QCD, Phys. Rev.D 70 (2004) 094029 [hep-lat/0407025] [SPIRES].
[59] G. Munster, On the phase structure of twisted mass lattice QCD, JHEP09 (2004) 035 [hep-lat/0407006] [SPIRES].
[60] L. Scorzato, Pion mass splitting and phase structure in twisted mass QCD, Eur. Phys. J.C 37 (2004) 445 [hep-lat/0407023] [SPIRES].
[61] S.R. Sharpe and J.M.S. Wu, Twisted mass chiral perturbation theory at next-to-leading order, Phys. Rev.D 71 (2005) 074501 [hep-lat/0411021] [SPIRES].
[62] J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett.B 184 (1987) 83 [SPIRES].
[63] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys.104 (1986) 177 [SPIRES]. · Zbl 0614.58014
[64] G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J.C 33 (2004) 543 [hep-lat/0311023] [SPIRES].
[65] G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl. Phys.B 721 (2005) 136 [hep-lat/0503014] [SPIRES]. · Zbl 1128.81346
[66] G. Colangelo and C. Haefeli, Finite volume effects for the pion mass at two loops, Nucl. Phys.B 744 (2006) 14 [hep-lat/0602017] [SPIRES].
[67] G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys.B 603 (2001) 125 [hep-ph/0103088] [SPIRES]. · Zbl 0972.81673
[68] R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of the pion from twisted-mass lattice QCD at Nf = 2, Phys. Rev.D 79 (2009) 074506 [arXiv:0812.4042] [SPIRES].
[69] B. Orth, T. Lippert and K. Schilling, Finite-size effects in lattice QCD with dynamical Wilson fermions, Phys. Rev.D 72 (2005) 014503 [hep-lat/0503016] [SPIRES].
[70] L. Giusti, Light dynamical fermions on the lattice: toward the chiral regime of QCD, PoS(LATTICE 2006)009 [hep-lat/0702014] [SPIRES].
[71] G. Munster and C. Schmidt, Chiral perturbation theory for lattice QCD with a twisted mass term, Europhys. Lett.66 (2004) 652 [hep-lat/0311032] [SPIRES].
[72] K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three and four loops, Nucl. Phys.B 583 (2000) 3 [hep-ph/9910332] [SPIRES].
[73] ALPHA collaboration, M. Della Morte et al., Scaling test of two-flavor O(a)-improved lattice QCD, JHEP07 (2008) 037 [arXiv:0804.3383] [SPIRES].
[74] S. Necco, Chiral low-energy constants from lattice QCD, PoS(CONFINEMENT8)024 [arXiv:0901.4257] [SPIRES].
[75] S. Aoki, Pion physics on the lattice, PoS(CD09)070 [arXiv:0910.3806] [SPIRES].
[76] ETM collaboration, R. Baron et al., Status of ETMC simulations with Nf = 2 + 1 + 1 twisted mass fermions, PoS(LATTICE2008)094 [arXiv:0810.3807] [SPIRES].
[77] ETM collaboration, R. Baron et al., First results of ETMC simulations with Nf = 2 + 1 + 1 twisted mass fermions, PoS(LAT 2009)104 [arXiv:0911.5224] [SPIRES]
[78] SciDAC collaboration, R.G. Edwards and B. Joo, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl.140 (2005) 832 [hep-lat/0409003] [SPIRES].
[79] P. Boyle, Bagel assembler kernel generator, http://www.ph.ed.ac.uk/ paboyle/bagel/Bagel.html. · Zbl 1197.81006
[80] R Development Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna Austria (2005).
[81] G.P. Lepage et al., Constrained curve fitting, Nucl. Phys. Proc. Suppl.106 (2002) 12 [hep-lat/0110175] [SPIRES].
[82] C. Michael, Fitting correlated data, Phys. Rev.D 49 (1994) 2616 [hep-lat/9310026] [SPIRES].
[83] C. Michael and A. McKerrell, Fitting correlated hadron mass spectrum data, Phys. Rev.D 51 (1995) 3745 [hep-lat/9412087] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.