×

Benchmarking in data envelopment analysis: an approach based on genetic algorithms and parallel programming. (English) Zbl 1291.90136

Summary: Data Envelopment Analysis (DEA) is a nonparametric technique to estimate the current level of efficiency of a set of entities. DEA also provides information on how to remove inefficiency through the determination of benchmarking information. This paper is devoted to study DEA models based on closest efficient targets, which are related to the shortest projection to the production frontier and allow inefficient firms to find the easiest way to improve their performance. Usually, these models have been solved by means of unsatisfactory methods since all of them are related in some sense to a combinatorial NP-hard problem. In this paper, the problem is approached by genetic algorithms and parallel programming. In addition, to produce reasonable solutions, a particular metaheuristic is proposed and checked through some numerical instances.

MSC:

90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
90C27 Combinatorial optimization
90C59 Approximation methods and heuristics in mathematical programming

Software:

LAPACK; ATLAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Coelli, D. S. P. Rao, and G. E. Battese, An Introduction to EffiCiency and Productivity Analysis, Kluwer Academic, 1998. · Zbl 0935.62128
[2] W. W. Cooper, L. M. Seiford, and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver software, Kluwer Academic, Boston, Mass, USA, 2000. · Zbl 0990.90500
[3] J. Aparicio, J. L. Ruiz, and I. Sirvent, “Closest targets and minimum distance to the Pareto-efficient frontier in DEA,” Journal of Productivity Analysis, vol. 28, pp. 209-218, 2007.
[4] M. C. A. S. Portela, P. C. Borges, and E. Thanassoulis, “Finding xlosest targets in non-oriented DEA models: the case of convex and non-convex technologies,” Journal of Productivity Analysis, vol. 19, pp. 251-269, 2003.
[5] A. Amirteimoori and S. Kordrostami, “A Euclidean distance-based measure of efficiency in data envelopment analysis,” Optimization, vol. 59, no. 7, pp. 985-996, 2010. · Zbl 1203.90080 · doi:10.1080/02331930902878333
[6] J. Aparicio and J. T. Pastor, “On how to properly calculate the Euclidean distance-based measure in DEA,” Optimization, 2012. · Zbl 1302.90129 · doi:10.1080/02331934.2012.655692
[7] J. T. Pastor and J. Aparicio, “The relevance of DEA benchmarking information and the least-distance measure: comment,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 397-399, 2010. · Zbl 1201.65001 · doi:10.1016/j.mcm.2010.03.010
[8] F. X. Frei and P. T. Harker, “Projections onto efficient frontiers: theoretical and computational extensions to DEA,” Journal of Productivity Analysis, vol. 11, pp. 275-300, 1999.
[9] E. Gonzalez and A. Alvarez, “From efficiency measurement to efficiency improvement: the choice of a relevant benchmark,” European Journal of Operational Research, vol. 133, pp. 512-520, 2001. · Zbl 1002.90530 · doi:10.1016/S0377-2217(00)00195-8
[10] C. Baek and J.-d. Lee, “The relevance of DEA benchmarking information and the least-distance measure,” Mathematical and Computer Modelling, vol. 49, no. 1-2, pp. 265-275, 2009. · Zbl 1165.90484 · doi:10.1016/j.mcm.2008.08.007
[11] G. R. Jahanshahloo, J. Vakili, and S. M. Mirdehghan, “Using the minimum distance of DMUs from the frontier of the PPS for evaluating group performance of DMUs in DEA,” Asia-Pacific Journal of Operational Research, vol. 29, no. 2, Article ID 1250010, 25 pages, 2012. · Zbl 1246.90076 · doi:10.1142/S0217595912500108
[12] W. Briec, “Hölder distance functions and measurement of technical efficiency,” Journal of Productivity Analysis, vol. 11, pp. 111-131, 1998.
[13] W. Briec and J. B. Lesourd, “Metric distance function and profit: some duality results,” Journal of Optimization Theory and Applications, vol. 101, no. 1, pp. 15-33, 1999. · Zbl 0945.90077 · doi:10.1023/A:1021762809393
[14] W. Briec and B. Lemaire, “Technical efficiency and distance to a reverse convex set,” European Journal of Operational Research, vol. 114, pp. 178-187, 1999. · Zbl 0944.90018 · doi:10.1016/S0377-2217(98)00089-7
[15] T. Coelli, “A multi-stage methodology for the solution of orientated DEA models,” Operations Research Letters, vol. 23, no. 3-5, pp. 143-149, 1998. · Zbl 0963.91032 · doi:10.1016/S0167-6377(98)00036-4
[16] L. Cherchye and T. Van Puyenbroeck, “A comment on multi-stage DEA methodology,” Operations Research Letters, vol. 28, no. 2, pp. 93-98, 2001. · Zbl 1016.91022 · doi:10.1016/S0167-6377(00)00068-7
[17] S. Lozano and G. Villa, “Determining a sequence of targets in DEA,” Journal of Operational Research Society, vol. 56, pp. 1439-1447, 2005. · Zbl 1142.90425 · doi:10.1057/palgrave.jors.2601964
[18] A. Charnes, J. J. Rousseau, and J. H. Semple, “Sensitivity and stability of efficiency classiffications in data envelopment analysis,” Journal of Productivity Analysis, vol. 7, pp. 5-18, 1996.
[19] A. Takeda and H. Nishino, “On measuring the inefficiency with the inner-product norm in data envelopment analysis,” European Journal of Operational Research, vol. 133, no. 2, pp. 377-393, 2001. · Zbl 0981.90056 · doi:10.1016/S0377-2217(99)00424-5
[20] G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, and M. Zohrehbandian, “Finding the piecewise linear frontier production function in data envelopment analysis,” Applied Mathematics and Computation, vol. 163, no. 1, pp. 483-488, 2005. · Zbl 1116.90037 · doi:10.1016/j.amc.2004.02.016
[21] G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, H. Zhiani Rezai, and F. Rezai Balf, “Finding strong defining hyperplanes of production possibility set,” European Journal of Operational Research, vol. 177, no. 1, pp. 42-54, 2007. · Zbl 1116.90037 · doi:10.1016/j.amc.2004.02.016
[22] G. R. Jahanshahloo, J. Vakili, and M. Zarepisheh, “A linear bilevel programming problem for obtaining the closest targets and minimum distance of a unit from the strong efficient frontier,” Asia-Pacific Journal of Operational Research, vol. 29, no. 2, Article ID 1250011, 19 pages, 2012. · Zbl 1246.90076 · doi:10.1142/S0217595912500108
[23] W. D. Cook and L. M. Seiford, “Data envelopment analysis (DEA)-thirty years on,” European Journal of Operational Research, vol. 192, no. 1, pp. 1-17, 2009. · Zbl 0963.91032 · doi:10.1016/S0167-6377(98)00036-4
[24] M. J. Farrell, “The measurement of productive efficiency,” Journal of the Royal Statistical Society A, vol. 120, pp. 253-281, 1957.
[25] A. Charnes, W. W. Cooper, and E. Rhodes, “Measuring the efficiency of decision making units,” European Journal of Operational Research, vol. 2, no. 6, pp. 429-444, 1978. · Zbl 0416.90080 · doi:10.1016/0377-2217(78)90138-8
[26] R. D. Banker, A. Charnes, and W. W. Cooper, “Some models for estimating technical and scale inefficiencies in data envelopment analysis,” Management Science, vol. 30, pp. 1078-1092, 1984. · Zbl 0552.90055 · doi:10.1287/mnsc.30.9.1078
[27] J. T. Pastor, J. L. Ruiz, and I. Sirvent, “An enhanced DEA russell graph efficiency measure,” European Journal of Operational Research, vol. 115, pp. 596-607, 1999. · Zbl 0946.91030 · doi:10.1016/S0377-2217(98)00098-8
[28] K. Tone, “A slacks-based measure of efficiency in data envelopment analysis,” European Journal of Operational Research, vol. 130, no. 3, pp. 498-509, 2001. · Zbl 0981.90056 · doi:10.1016/S0377-2217(99)00424-5
[29] M. Mitchell, An Introduction to Genetic Algorithm, MIT Press, 1998. · Zbl 0906.68113
[30] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg, “Hyperheuristics: an emerging direction in modern search technology,” KHandbook of Metaheuristics, vol. 16, pp. 457-474, 2003. · Zbl 1102.90377 · doi:10.1007/0-306-48056-5_16
[31] R. Chandra, R. Menon, and L. Dagum, Parallel Programming in OpenMP, Operations Morgan Kauffman, 2001.
[32] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An extended set of FORTRAN basic linear algebra subroutines,” ACM Transactions on Mathematical Software, vol. 14, pp. 1-17, 1988. · Zbl 0639.65016 · doi:10.1145/42288.42291
[33] E. Anderson, Z. Bai, C. Bischof, J. Demmel, and J. J. Dongarra, LAPACK User’s Guide, Society for Industrial and Applied Mathematics, 1995. · Zbl 0843.65018
[34] R. Clinton Whaley, A. Petitet, and J. Dongarra, “Automated empirical optimizations of software and the ATLAS project,” Parallel Computing, vol. 27, pp. 3-35, 2001. · Zbl 0971.68033 · doi:10.1016/S0167-8191(00)00087-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.