×

A new approach for calculating the real stability radius. (English) Zbl 1317.65097

This paper presents a fast method for the calculation of the so-called real stability radius of the given dynamical system. This method exploits a relationship between singular values of the transfer function and imaginary eigenvalues of the three-parameter Hamiltonian matrix. The critical point is found using the implicit determinant method. The presented approach requires only to solve a linear system in each Newton step (instead of solving the singular value and the Hamiltonian eigenvalue problems). On the other hand, the convergence is only local, thus this approach highly depends on a good initial guess. Some strategies for the inital guess are discussed. The authors illustrate their new approach on numerical examples.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
93B60 Eigenvalue problems
37C75 Stability theory for smooth dynamical systems
65F20 Numerical solutions to overdetermined systems, pseudoinverses
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akinola, R.O., Freitag, M.A., Spence, A.: The calculation of the distance to a nearby defective matrix. Numer. Linear Algebra Appl. (2013). To appear. doi:10.1002/nla.1888 · Zbl 1340.65072
[2] Akinola, R.O., Freitag, M.A., Spence, A.: A method for the computation of Jordan blocks in parameter-dependent matrices. IMA J. Numer. Anal. (2013). To appear. doi:10.1093/imanum/drt028 · Zbl 1302.65136
[3] Benner, P.; Kressner, D., New Hamiltonian eigensolvers with applications in control, 6551-6556 (2005), New York
[4] Benner, P., Kressner, D.: Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices. II. ACM Trans. Math. Softw. 32, 352-373 (2006) · Zbl 1365.65091
[5] Boisvert, B., Pozo, R., Remington, K., Miller, B., Lipman, R.: Matrix market (2013). Available online at http://math.nist.gov/MatrixMarket/ · Zbl 0839.93039
[6] Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L∞-norm. Syst. Control Lett. 15, 1-7 (1990) · Zbl 0704.93014
[7] Boyd, S., Balakrishnan, V., Kabamba, P.: A bisection method for computing the H∞-norm of a transfer matrix and related problems. Math. Control Signals Syst. 2, 207-219 (1989) · Zbl 0674.93020
[8] Bruinsma, N.A., Steinbuch, M.: A fast algorithm to compute the H∞-norm of a transfer function matrix. Syst. Control Lett. 14, 287-293 (1990) · Zbl 0699.93021
[9] Byers, R.: A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J. Sci. Stat. Comput. 9, 875-881 (1988) · Zbl 0658.65044
[10] Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435, 3189-3205 (2011) · Zbl 1228.65065
[11] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996) · Zbl 0865.65009
[12] Govaerts, W.: Stable solvers and block elimination for bordered systems. SIAM J. Matrix Anal. Appl. 12, 469-483 (1991) · Zbl 0736.65015
[13] Griewank, A., Reddien, G.W.: Characterization and computation of generalized turning points. SIAM J. Numer. Anal. 21, 176-185 (1984) · Zbl 0536.65031
[14] Guglielmi, N., Overton, M.L.: Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix. SIAM J. Matrix Anal. Appl. 32, 1166-1192 (2011) · Zbl 1248.65034
[15] Gürbüzbalaban, M.: Theory and methods for problems arising in robust stability, optimization and quantization. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University (2012) · Zbl 0839.93039
[16] He, C., Watson, G.A.: An algorithm for computing the distance to instability. SIAM J. Matrix Anal. Appl. 20, 101-116 (1999) · Zbl 0927.65055
[17] Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic Riccati equation. Syst. Control Lett. 8, 105-113 (1986) · Zbl 0626.93054
[18] Karow, M., Kokiopoulou, E., Kressner, D.: On the computation of structured singular values and pseudospectra. Syst. Control Lett. 59, 122-129 (2010) · Zbl 1186.93032
[19] Keller, H. B.; Rabinowitz, P. H. (ed.), Numerical solution of bifurcation and nonlinear eigenvalue problems, 359-384 (1977), New York
[20] Kressner, D., Vandereycken, B.: Subspace methods for computing the pseudospectral abscissa and the stability radius. Tech. Rep., Technical report, MATHICSE (2012) · Zbl 1306.65187
[21] Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E., Young, P., Doyle, J.: A formula for computation of the real stability radius. Automatica 31, 879-890 (1995) · Zbl 0839.93039
[22] Spence, A., Poulton, C.: Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204, 65-81 (2005) · Zbl 1143.82336
[23] Sreedhar, J.; Dooren, P.; Tits, A. L., A fast algorithm to compute the real structured stability radius, Ascona, 1995, Basel · Zbl 0872.93027
[24] Sun, J.G.: A note on simple nonzero singular values. J. Comput. Math. 6, 258-266 (1988) · Zbl 0662.15008
[25] Trefethen, L.N., Embree, M.: The Behavior of Nonnormal Matrices and Operators. Spectra and Pseudospectra. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[26] Dooren, P., Robustness measures and level set methods (2006)
[27] Loan, C. F., How near is a stable matrix to an unstable matrix?, Brunswick, Maine, 1984, Providence · Zbl 0576.15011
[28] Wright, T.G.: Eigtool (2002). See http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.