×

A Clifford algebraic framework for Coxeter group theoretic computations. (English) Zbl 1301.20030

Summary: Real physical systems with reflective and rotational symmetries such as viruses, fullerenes and quasicrystals have recently been modeled successfully in terms of three-dimensional (affine) Coxeter groups. Motivated by this progress, we explore here the benefits of performing the relevant computations in a Geometric Algebra framework, which is particularly suited to describing reflections. Starting from the Coxeter generators of the reflections, we describe how the relevant chiral (rotational), full (Coxeter) and binary polyhedral groups can be easily generated and treated in a unified way in a versor formalism. In particular, this yields a simple construction of the binary polyhedral groups as discrete spinor groups. These in turn are known to generate Lie and Coxeter groups in dimension four, notably the exceptional groups \(D_4\), \(F_4\) and \(H_4\). A Clifford algebra approach thus reveals an unexpected connection between Coxeter groups of ranks 3 and 4. We discuss how to extend these considerations and computations to the Conformal Geometric Algebra setup, in particular for the non-crystallographic groups, and construct root systems and quasicrystalline point arrays. We finally show how a Clifford versor framework sheds light on the geometry of the Coxeter element and the Coxeter plane for the examples of the two-dimensional non-crystallographic Coxeter groups \(I_2(n)\) and the three-dimensional groups \(A_3\), \(B_3\), as well as the icosahedral group \(H_3\).

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
15A66 Clifford algebras, spinors
17B22 Root systems

Software:

CLUCalc
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Pierre Anglès, Construction de revêtements du groupe conforme d’un espace vectoriel muni d’une métrique de type (p, q). Annales de l’institut Henri Poincaré (A) Physique théorique, 33 (1) 33, 1980. · Zbl 0447.53047
[2] Pierre Anglès, Conformal Groups In Geometry And Spin Structures. Progress in Mathematical Physics. Birkhäuser, 2008. · Zbl 1136.53001
[3] James Emory Baugh, Regular Quantum Dynamics. PhD thesis, Georgia Institute of Technology, 2004. · Zbl 0010.01101
[4] D. L. D. Caspar and A. Klug, Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1-24 (1962) · doi:10.1101/SQB.1962.027.001.005
[5] Coxeter H.S.M.: Discrete groups generated by reflections. Ann. of Math. 35, 588-621 (1934) · Zbl 0010.01101 · doi:10.2307/1968753
[6] Pierre-Philippe Dechant, Models of the Early Universe. PhD thesis, University of Cambridge, UK, 2011.
[7] Pierre-Philippe Dechant, Clifford algebra unveils a surprising geometric significance of quaternionic root systems of Coxeter groups. Advances in Applied Clifford Algebras, 23 (2) (2013), 301-321. · Zbl 1273.15021
[8] Pierre-Philippe Dechant, Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction. ArXiv e-print 1207.7339, 2012.
[9] Pierre-Philippe Dechant, Platonic solids generate their four-dimensional analogues. Acta Cryst. A69 (2013). doi:10.1107/S0108767313021442 · Zbl 1284.52016
[10] Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock, Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups. Journal of Physics A: Mathematical and Theoretical 45 (28), 285202, (2012). · Zbl 1252.81071
[11] Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock, Affine extensions of non-crystallographic Coxeter groups induced by projection. Journal of Mathematical Physics 54 (2013). [http://dx.doi.org/10.1063/1.4820441] · Zbl 1291.20037
[12] Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock, Applications of affine extensions of non-crystallographic Coxeter groups in carbon chemistry and virology. in preparation, 2013. · Zbl 1291.20037
[13] Pierre-Philippe Dechant, Christoph Luhn, Céline Boehm, and Silvia Pascoli, Discrete anomalies of chiral and binary polyhedral groups and their implications for neutrino and flavour model building. in preparation, 2013.
[14] P. A. M. Dirac, Wave equations in conformal space. The Annals of Mathematics 37 (2) (1936), pp. 429-442. · Zbl 0014.08004
[15] Chris Doran and Anthony N. Lasenby, Geometric Algebra for Physicists. Cambridge University Press, Cambridge, 2003. · Zbl 1078.53001
[16] P. G. O. Freund, Introduction to Supersymmetry. Cambridge University Press, Cambridge, April 1988. · Zbl 0601.53067
[17] D. J. H. Garling, Clifford Algebras: An Introduction. London Mathematical Society Student Texts. Cambridge University Press, 2011. · Zbl 1235.15025
[18] David Hestenes, Space-Time Algebra. Gordon and Breach, New York, 1966. · Zbl 0183.28901
[19] David Hestenes, New foundations for classical mechanics; 2nd ed. Fundamental theories of physics. Kluwer, Dordrecht, 1999. · Zbl 0932.70001
[20] David Hestenes, Point Groups and Space Groups in Geometric Algebra Birkhäuser, Boston, 2002, pages 3-34. · Zbl 1033.20043
[21] David Hestenes and Jeremy W. Holt, The Crystallographic Space Groups in Geometric Algebra. Journal of Mathematical Physics 48:023514, 2007. · Zbl 1121.82042
[22] David Hestenes and Garret Sobczyk, Clifford algebra to geometric calculus: a unified language for mathematics and physics. Fundamental theories of physics. Reidel, Dordrecht, 1984. · Zbl 0541.53059
[23] Eckhard Hitzer and Christian Perwass, Interactive 3D space group visualization with CLUCalc and the Clifford Geometric Algebra description of space groups. Advances in Applied Clifford Algebras 20 (2010), 631-658. 10.1007/s00006-010-0214-z. · Zbl 1242.20060
[24] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge University Press, Cambridge, 1990. · Zbl 0725.20028
[25] Giuliana Indelicato, Paolo Cermelli, David Salthouse, Simone Racca, Giovanni Zanzotto, and Reidun Twarock, A crystallographic approach to structural transitions in icosahedral viruses. Journal of Mathematical Biology (2011), pages 1-29. 10.1007/s00285-011-0425-5. · Zbl 1303.92065
[26] A. Janner, Towards a classification of icosahedral viruses in terms of indexed polyhedra. Acta Crystallographica Section A 62 (5) 2006, 319-330. · Zbl 1370.82081
[27] A. Katz, Some local properties of the 3-dimensional Penrose tilings, an introduction to the mathematics of quasicrystals. Academic Press, 1989.
[28] T. Keef and R. Twarock, Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses. J Math Biol 59 (3) (2009), 287-313. · Zbl 1311.92071
[29] T. Keef, J.Wardman, N.A. Ranson, P. G. Stockley, and R. Twarock, Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool. Acta crystallographica. Section A, Foundations of crystallography 69 (Pt 2) (2013), 140-150.
[30] Tom Keef, Pierre-Philippe Dechant, and Reidun Twarock, Packings of solids with non-crystallographic symmetry. in preparation, 2013. · Zbl 1358.92106
[31] M. Koca, M. Al-Ajmi, and S. Al-Shidhani, Quasi-regular polyhedra and their duals with Coxeter symmetries represented by quaternions ii. The African Review of Physics 6 (0), 2011.
[32] M. Koca, R. Koc, and M. Al-Barwani, Noncrystallographic Coxeter groupH4inE8. Journal of Physics A: Mathematical and General 34 dec 2001, 11201-11213. · Zbl 1007.20039
[33] M. Koca, N. O. Koca, and R. Koç, Quaternionic roots ofE8related Coxeter graphs and quasicrystals. Turkish Journal of Physics 22 May 1998, 421-436.
[34] Mehmet Koca, Mudhahir Al-Ajmi, and Ramazan Koç, Polyhedra obtained from Coxeter groups and quaternions. Journal of Mathematical Physics 48 (11) 113514, 2007. · Zbl 1152.52302
[35] Mehmet Koca, Nazife Ozdes Koca, and Ramazan Koç, Catalan solids derived from three-dimensional root systems and quaternions. Journal of Mathematical Physics 51 (4) 043501, 2010. · Zbl 1310.51019
[36] H. Kroto, Carbon onions introduce new flavour to fullerene studies. Nature 359, (1992), 670-671.
[37] H. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60:Buckminsterfullerene. Nature 318, (1985), 162-163.
[38] E. F. Kustov, V. I. Nefedov, A. V. Kalinin, and G. S. Chernova, Classification system for fullerenes. Russian Journal of Inorganic Chemistry 53 (9) 2008, 1384-1395. · Zbl 1164.82016
[39] A N Lasenby, Joan Lasenby, and Richard Wareham, A covariant approach to geometry using Geometric Algebra. Technical Report. University of Cambridge Department of Engineering, Cambridge, UK, 2004. · Zbl 0996.51008
[40] Anthony N. Lasenby, Recent applications of Conformal Geometric Algebra. In Hongbo Li, Peter J. Olver, and Gerald Sommer, editors, Computer Algebra and Geometric Algebra with Applications: 6th InternationalWorkshop, IWMM 2004, Shanghai, China, May 19-21, 2004, volume 3519 of Lecture Notes in Computer Science, pages 298-328. Springer Berlin / Heidelberg, Secaucus, NJ, USA, 2005. · Zbl 1084.51500
[41] L.S. Levitov and J. Rhyner, Crystallography of quasicrystals; application to icosahedral symmetry. J. Phys. France 49 (49) (1988), 1835-1849.
[42] Jon McCammond and T. Petersen, Bounding reflection length in an affine Coxeter group. Journal of Algebraic Combinatorics pages 1-9. 10.1007/s10801-011-0289-1. · Zbl 1229.20034
[43] R. V. Moody and J. Patera, Quasicrystals and icosians. Journal of Physics A: Mathematical and General 26 (12), (1993), 2829. · Zbl 0792.52015
[44] J. Patera and R. Twarock, Affine extensions of noncrystallographic Coxeter groups and quasicrystals. Journal of Physics A: Mathematical and General 35 (2002), 1551-1574. · Zbl 1012.20045
[45] Ian R. Porteous, Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge, 1995. · Zbl 0855.15019
[46] M. Senechal, Quasicrystals and Geometry. Cambridge University Press, 1996.
[47] O. P. Shcherbak, Wavefronts and reflection groups. Russian Mathematical Surveys 43 (3) (1988), 149. · Zbl 0675.58007
[48] D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with longrange order and no translational symmetry. Phys. Rev. Lett. 53 (1984), 1951-1953.
[49] P. G. Stockley and R. Twarock, Emerging Topics in Physical Virology. Imperial College Press, 2010.
[50] R. Twarock, New group structures for carbon onions and carbon nanotubes via affine extensions of noncrystallographic Coxeter groups. Phys. Lett. A 300 (2002), 437-444.
[51] R. Twarock, Mathematical virology: a novel approach to the structure and assembly of viruses. Phil. Trans. R. Soc. (364) (2006), 3357-3373. · Zbl 1154.92314
[52] R. Zandi, D. Reguera, R. F. Bruinsma, W. M. Gelbart, and J. Rudnick, Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. 101 (44) (2004), 15556-15560.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.