×

On the use of information theory to quantify parameter uncertainty in groundwater modeling. (English) Zbl 1302.76180

Summary: We apply information theory to quantify parameter uncertainty in a groundwater flow model. A number of parameters in groundwater modeling are often used with lack of knowledge of site conditions due to heterogeneity of hydrogeologic properties and limited access to complex geologic structures. The present Information Theory-based (ITb) approach is to adopt entropy as a measure of uncertainty at the most probable state of hydrogeologic conditions. The most probable conditions are those at which the groundwater model is optimized with respect to the uncertain parameters. An analytical solution to estimate parameter uncertainty is derived by maximizing the entropy subject to constraints imposed by observation data. MODFLOW-2000 is implemented to simulate the groundwater system and to optimize the unknown parameters. The ITb approach is demonstrated with a three-dimensional synthetic model application and a case study of the Kansas City Plant. Hydraulic heads are the observations and hydraulic conductivities are assumed to be the unknown parameters. The applications show that ITb is capable of identifying which inputs of a groundwater model are the most uncertain and what statistical information can be used for site exploration.

MSC:

76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
94A15 Information theory (general)

Software:

MODFLOW-2000
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.2136/vzj2004.1340 · doi:10.2136/vzj2004.1340
[2] DOI: 10.1029/96WR00160 · doi:10.1029/96WR00160
[4] Kitanidis, Introduction to Geostatistics.: Applications in Hydrogeology (1997)
[5] DOI: 10.1029/WR017i001p00149 · doi:10.1029/WR017i001p00149
[6] DOI: 10.1016/j.advwatres.2007.12.003 · doi:10.1016/j.advwatres.2007.12.003
[7] DOI: 10.1002/wrcr.20064 · doi:10.1002/wrcr.20064
[8] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[9] DOI: 10.1103/PhysRev.106.620 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[10] DOI: 10.1002/(SICI)1099-1085(199705)11:6<587::AID-HYP479>3.0.CO;2-P · doi:10.1002/(SICI)1099-1085(199705)11:6<587::AID-HYP479>3.0.CO;2-P
[11] Haykin, Nonlinear Methods of Spectral Analysis (1983) · Zbl 0523.94001
[12] Robinson, Geophysical Signal. Analysis (1980)
[13] DOI: 10.1111/j.1365-2478.1988.tb02169.x · doi:10.1111/j.1365-2478.1988.tb02169.x
[14] Lee, On the equivalence of kriging and maximum entropy estimators, Math., Geol. 29 pp 131– (1997) · Zbl 0970.86558
[15] DOI: 10.1023/A:1015511811686 · doi:10.1023/A:1015511811686
[16] DOI: 10.1007/s004770050024 · Zbl 0942.76066 · doi:10.1007/s004770050024
[17] DOI: 10.1021/jp0302921 · doi:10.1021/jp0302921
[18] DOI: 10.1190/1.2757738 · doi:10.1190/1.2757738
[20] Derivative Approximation by Finite Differenceshttp://www.geometrictools.com/
[21] Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (1996)
[22] Mardia, Multivariate Analysis (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.