×

Order \(10^4\) speedup in global linear instability analysis using matrix formation. (English) Zbl 1297.76125

Summary: A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summation-by-parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of \(O(10^4)\). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76Exx Hydrodynamic stability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Theofilis, V., Global linear instability, Annu. Rev. Fluid Mech., 43, 319-352 (2011) · Zbl 1299.76074
[2] Abdessemed, N.; Sherwin, S. J.; Theofilis, V., Linear instability analysis of low pressure turbine flows, J. Fluid Mech., 628, 57-83 (2009) · Zbl 1181.76066
[3] Barkley, D.; Blackburn, H. M.; Sherwin, S. J., Direct optimal growth analysis for timesteppers, Int. J. Numer. Meth. Fluids, 57, 1435-1458 (2008) · Zbl 1144.76044
[4] Pierrehumbert, R. T., Universal shortwave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Let., 57, 2157-2159 (1986)
[5] Zebib, A., Stability of viscous flow past a circular cylinder, J. Eng. Math., 21, 155-165 (1987) · Zbl 0638.76055
[6] Tatsumi, T.; Yoshimura, T., Stability of the laminar flow in a rectangular duct., J. Fluid Mech., 212, 437-449 (1990) · Zbl 0692.76038
[7] Jackson, C. P., A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J. Fluid Mech., 23-45 (1987) · Zbl 0639.76041
[8] Morzyńksi, M.; Thiele, F., Numerical stability analysis of flow about a cylinder, Z. Angew. Math. Mech., 71, T424-T428 (1991)
[9] Dijkstra, H. A., On the structure of cellular solutions in Rayleigh-Benard-Marangoni flows in small-aspect-ratio containers, J. Fluid Mech., 243, 73-102 (1992) · Zbl 0825.76219
[10] González, L. M.; Theofilis, V.; Gomez-Blanco, R., Finite element methods for viscous incompressible BiGlobal instability analysis on unstructured meshes, AIAA J., 45, 840-854 (2007)
[11] Barkley, D.; Henderson, R. D., Three-dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech., 322, 215-241 (1996) · Zbl 0882.76028
[12] Henderson, R. D.; Barkley, D., Secondary instability of the wake of a circular cylinder, Phys. Fluids, 8, 65-112 (1996) · Zbl 1087.76041
[13] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford University Press · Zbl 1116.76002
[14] Theofilis, V.; Barkley, D.; Sherwin, S. J., Spectral/hp element technology for flow instability and control, Aero. J., 106, 619-625 (2002)
[15] Pierrehumbert, R. T.; Widnall, S. E., The two- and three-dimensional instabilities of a spatially periodic shear layer, J. Fluid Mech., 114, 59-82 (1982) · Zbl 0479.76056
[16] Eriksson, L. E.; Rizzi, A., Computer-aided analysis of the convergence to steady state of discrete approximations to the Eler equations, J. Comp. Phys., 57, 90-128 (1985) · Zbl 0624.76078
[17] Edwards, W. S.; Tuckerman, L. S.; Friesner, R. A.; Sorensen, D. C., Krylov methods for the incompressible Navier-Stokes equations, J. Comp. Phys., 110, 82-102 (1994) · Zbl 0792.76062
[18] Tezuka, A.; Suzuki, K., Three-dimensional global linear stability analysis of flow around a spheroid, AIAA J., 44, 1697-1708 (2006)
[19] Bagheri, S.; Schlatter, P.; Schmid, P. J.; Henningson, D. S., Global stability of a jet in crossflow, J. Fluid Mech., 624, 33-44 (2009) · Zbl 1171.76372
[20] Blackburn, H. M.; Barkley, D.; Sherwin, S. J., Convective instability and transient growth in flow over a backward-facing step, J. Fluid Mech., 603, 271-304 (2008) · Zbl 1151.76470
[21] Theofilis, V., Advances in global linear instability of nonparallel and three-dimensional flows, Prog. Aero. Sciences, 39, 4, 249-315 (2003)
[22] Crouch, J. D.; Garbaruk, A.; Magidov, D., Predicting the onset of flow unsteadiness based on global instability, J. Comp. Phys., 224, 924-940 (2007) · Zbl 1123.76018
[23] Rodríguez, D.; Theofilis, V., Massively parallel numerical solution of the BiGlobal linear instability eigenvalue problem using dense linear algebra, AIAA J., 47, 2449-2459 (2009)
[24] Kitsios, V.; Rodríguez, D.; Theofilis, V.; Ooi, A.; Soria, J., BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies, J. Comp. Phys., 228, 7181-7196 (2009) · Zbl 1391.76514
[25] Rodríguez, D.; Theofilis, V., On the birth of stall cells on airfoils, Theor. Comp. Fluid Dyn., 25, 105-118 (2011) · Zbl 1272.76124
[26] Rodríguez, D.; Theofilis, V., Structural changes of laminar separation bubbles induced by global linear instability, J. Fluid Mech., 655, 280-305 (2010) · Zbl 1197.76136
[27] Merle, X.; Alizard, F.; Robinet, J.-C., Finite difference methods for viscous incompressible global stability analysis, Comput. Fluids, 39, 911-925 (2010) · Zbl 1242.76208
[28] Lele, S., Compact finite difference schemes with spectral- like resolution, J. Comp. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[29] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite-difference schemes for computational acoustics, J. Comp. Phys., 107, 262-281 (1993) · Zbl 0790.76057
[30] Strand, B., Summation by parts for finite difference approximations for d/dx, J. Comp. Phys., 110, 47-67 (1994) · Zbl 0792.65011
[31] Mattson, K.; Nordström, J., Summation by parts operators for finite difference approximations of second derivatives, J. Comp. Phys., 199, 503-540 (2004) · Zbl 1071.65025
[32] Hermanns, M.; Hernández, J. A., Stable high-order finite-difference methods based on non-uniform grid point distributions, Int. J. Numer. Meth. Fluids, 56, 233-255 (2008) · Zbl 1131.65074
[33] Schmid, P.; Henningson, D. S., Stability and Transition in Shear Flows (2001), Springer: Springer New York · Zbl 0966.76003
[34] Morse, P. M.; Feshbach, H., Methods of Theoretical Physics, Parts I, II (1953), McGraw-Hill · Zbl 0051.40603
[35] Theofilis, V.; Duck, P.; Owen, J., Viscous linear stability analysis of rectangular duct and cavity flows, J. Fluid Mech., 505, 249-286 (2004) · Zbl 1069.76020
[36] Merle, X.; Alizard, F.; Robinet, J.-Ch., Finite difference methods for viscous incompressible global instability analysis, Comput. Fluids, 39, 911-925 (2010) · Zbl 1242.76208
[38] Carpenter, M.; Nordström, J.; Gottlieb, D., Revisiting and extending interface penalties for multi-domain summation-by-parts operators, J. Sci. Comput, 45, 118-150 (2011) · Zbl 1203.65176
[39] Fornberg, B., Calculation of weights in finite difference formulas, SIAM Review, 40, 685-691 (1998) · Zbl 0914.65010
[40] Hildebrand, F., Introduction to Numerical Analysis (1987), Dover · Zbl 0641.65001
[41] Isaacson, E.; Keller, H., Analysis of Numerical Methods (1994), Dover · Zbl 0168.13101
[42] Boyd, J., Chebyshev and Fourier spectral methods (1989), Springer · Zbl 0681.65079
[43] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1987), Springer · Zbl 0636.76009
[44] Fornberg, B., A Practical Guide to Pseudospectral Methods (1998), Cambridge University Press · Zbl 0912.65091
[46] Saad, Y., Variations of Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Algebra Appl., 34, 269-295 (1980) · Zbl 0456.65017
[47] Amestoy, P.; Duff, I.; Koster, J.; L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. A, 1, 15-41 (2001) · Zbl 0992.65018
[48] Amestoy, P.; Guermouche, A.; L’Excellent, J.-Y.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 2, 136-156 (2006)
[49] Orszag, S., Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, 689-703 (1971) · Zbl 0237.76027
[50] Kirchner, N. P., Computational aspects of the spectral Galerkin fem for the Orr-Sommerfeld equation, Int. J. Numer. Meth. Fluids, 32, 119-137 (2000) · Zbl 0979.76048
[51] Mack, L., A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer, J. Fluid Mech., 73, 497-520 (1976) · Zbl 0339.76030
[53] Lin, R.-S.; Malik, M. R., On the stability of attachment-line boundary layers. Part 1. The incompressible swept Hiemenz flow, J. Fluid Mech., 311, 239-255 (1996) · Zbl 0953.76025
[56] Feldman, Y.; Gelfgat, A., Oscillatory instability in a 3d lid-driven flow in a cube, Phys. Fluids, 22, 093602 (2010)
[57] Reddy, S. C.; Schmid, P. J.; Henningson, D. S., Pseudospectra of the Orr-Sommerfeld equation, SIAM J. Appl. Math., 53, 15-47 (1993) · Zbl 0778.34060
[58] Kirchner, N., Computational aspects of the spectral Galerkin fem for the Orr-Sommerfeld equation, Int. J. Numer. Meth. Fluids, 32, 119-137 (2000) · Zbl 0979.76048
[59] Golub, G. H.; van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[60] Malik, M. R., Numerical methods for hypersonic boundary layer stability, J. Comp. Phys., 86, 376-413 (1990) · Zbl 0682.76043
[61] Trefethen, L. N.; Trefethen, A. E.; Reddy, S. C.; Driscoll, T., Hydrodynamic stability without eigenvalues, Science, 261, 578-584 (1993) · Zbl 1226.76013
[63] Albensoeder, S.; Kuhlmann, H. C.; Rath, H. J., Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem, Phys. Fluids, 13, 121-136 (2001) · Zbl 1184.76025
[64] Theofilis, V.; Fedorov, A.; Obrist, D.; Dallmann, U. C., The extended Görtler-Hämmerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow, J. Fluid Mech., 487, 271-313 (2003) · Zbl 1054.76031
[65] Rosenhead, L., Laminar Boundary Layers (1963), Oxford University Press · Zbl 0115.20705
[67] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[68] Schreiber, R.; Keller, H. B., Driven cavity flows by efficient numerical techniques, J. Comput. Phys., 49, 310-433 (1983) · Zbl 0503.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.