×

Bino dark matter and big bang nucleosynthesis in the constrained \(E_{6}\) SSM with massless inert singlinos. (English) Zbl 1298.81466

Summary: We discuss a new variant of the \(E_{6}\) inspired supersymmetric standard model (\(E_{6}\) SSM) in which the two inert singlinos are exactly massless and the dark matter candidate has a dominant bino component. A successful relic density is achieved via a novel mechanism in which the bino scatters inelastically into heavier inert Higgsinos during the time of thermal freeze-out. The two massless inert singlinos contribute to the effective number of neutrino species at the time of Big Bang Nucleosynthesis, where the precise contribution depends on the mass of the \(Z^{\prime}\) which keeps them in equilibrium. For example for \(m_{Z^{\prime}} > 1300\) GeV we find \(N_{\text{eff}} \approx 3.2\), where the smallness of the additional contribution is due to entropy dilution. We study a few benchmark points in the constrained \(E_{6}\) SSM with massless inert singlinos to illustrate this new scenario.

MSC:

81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81U35 Inelastic and multichannel quantum scattering
81V15 Weak interaction in quantum theory
83F05 Relativistic cosmology

Software:

LanHEP; micrOMEGAs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl.180 (2009) 306 [arXiv:0803.0586] [SPIRES].
[2] D.J.H. Chung et al., The soft supersymmetry-breaking Lagrangian: theory and applications, Phys. Rept.407 (2005) 1 [hep-ph/0312378] [SPIRES].
[3] S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES]. · Zbl 1202.81229
[4] J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys.B 238 (1984) 453 [SPIRES].
[5] G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept.267 (1996) 195 [hep-ph/9506380] [SPIRES].
[6] R.C. Cotta, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Dark matter in the MSSM, New J. Phys.11 (2009) 105026 [arXiv:0903. 4409] [SPIRES].
[7] S.F. King and J.P. Roberts, Natural implementation of neutralino dark matter, JHEP09 (2006) 036 [hep-ph/0603095] [SPIRES].
[8] S.F. King, J.P. Roberts and D.P. Roy, Natural dark matter in SUSY GUTs with non-universal gaugino masses, JHEP10 (2007) 106 [arXiv:0705.4219] [SPIRES].
[9] J.R. Ellis, S.F. King and J.P. Roberts, The fine-tuning price of neutralino dark matter in models with non-universal Higgs masses, JHEP04 (2008) 099 [arXiv:0711.2741] [SPIRES].
[10] G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev.D 49 (1994) 6173 [hep-ph/9312272] [SPIRES].
[11] J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev.D 61 (2000) 075005 [hep-ph/9909334] [SPIRES].
[12] J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys.13 (2000) 181 [hep-ph/9905481] [SPIRES].
[13] J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino-stop coannihilation in the CMSSM, Astropart. Phys.18 (2003) 395 [hep-ph/0112113] [SPIRES].
[14] H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with co-annihilations, JHEP03 (2002) 042 [hep-ph/0202076] [SPIRES].
[15] S.F. King, S. Moretti and R. Nevzorov, Theory and phenomenology of an exceptional supersymmetric standard model, Phys. Rev.D 73 (2006) 035009 [hep-ph/0510419] [SPIRES].
[16] S.F. King, S. Moretti and R. Nevzorov, Exceptional supersymmetric standard model, Phys. Lett.B 634 (2006) 278 [hep-ph/0511256] [SPIRES].
[17] S.F. King, S. Moretti and R. Nevzorov, Gauge coupling unification in the exceptional supersymmetric standard model, Phys. Lett.B 650 (2007) 57 [hep-ph/0701064] [SPIRES]. · Zbl 1248.81123
[18] J.P. Hall and S.F. King, Neutralino dark matter with inert higgsinos and singlinos, JHEP08 (2009) 088 [arXiv:0905.2696] [SPIRES].
[19] J.P. Hall et al., Novel Higgs decays and dark matter in the E6SSM, Phys. Rev.D 83 (2011) 075013 [arXiv:1012.5114] [SPIRES].
[20] XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, arXiv:1104.2549 [SPIRES].
[21] P. Athron et al., Predictions of the constrained exceptional supersymmetric standard model, Phys. Lett.B 681 (2009) 448 [arXiv:0901.1192] [SPIRES].
[22] P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, The constrained exceptional supersymmetric standard model, Phys. Rev.D 80 (2009) 035009 [arXiv:0904.2169] [SPIRES].
[23] P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, LHC signatures of the constrained exceptional supersymmetric standard model, arXiv:1102.4363 [SPIRES].
[24] J. Kalinowski, S.F. King and J.P. Roberts, Neutralino dark matter in the USSM, JHEP01 (2009) 066 [arXiv:0811.2204] [SPIRES].
[25] WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl.192 (2011) 18 [arXiv:1001.4538] [SPIRES].
[26] R. Howl and S.F. King, Solving the flavour problem in supersymmetric standard models with three Higgs families, Phys. Lett.B 687 (2010) 355 [arXiv:0908.2067] [SPIRES].
[27] R. Howl and S.F. King, Minimal E6supersymmetric standard model, JHEP01 (2008) 030 [arXiv:0708.1451] [SPIRES].
[28] J. Kalinowski, S.F. King and J.P. Roberts, Neutralino dark matter in the USSM, JHEP01 (2009) 066 [arXiv:0811.2204] [SPIRES].
[29] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev.D 43 (1991) 3191 [SPIRES].
[30] M. Schelke, Supersymmetric dark matter: aspects of sfermion coannihilations, Stockholms universitet, Stockholm Sweden (2004).
[31] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a tool for dark matter studies, arXiv:1005.4133 [SPIRES]. · Zbl 1196.81050
[32] A. Semenov, LanHEP — a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [SPIRES]. · Zbl 1348.81025
[33] S.Y. Choi, S.-C. Park, J.H. Jang and H.S. Song, Neutralino nucleus elastic cross section in the minimal supersymmetric standard model with explicit CP-violation, Phys. Rev.D 64 (2001) 015006 [hep-ph/0012370] [SPIRES].
[34] I. Gogoladze, R. Khalid, Y. Mimura and Q. Shafi, Direct and indirect detection and LHC signals of bino-higgsino dark matter, Phys. Rev.D 83 (2011) 095007 [arXiv:1012.1613] [SPIRES].
[35] Y.I. Izotov and T.X. Thuan, The primordial abundance of4He: evidence for non-standard big bang nucleosynthesis, Astrophys. J.710 (2010) L67 [arXiv:1001.4440] [SPIRES].
[36] A. Serebrov et al., Neutron lifetime measurements using gravitationally trapped ultracold neutrons, Phys. Rev.C 78 (2008) 1 [nucl-ex/0702009] [SPIRES].
[37] E. Aver, K.A. Olive and E.D. Skillman, A new approach to systematic uncertainties and self-consistency in helium abundance determinations, JCAP05 (2010) 003 [arXiv:1001.5218] [SPIRES].
[38] G. Steigman, K.A. Olive and D.N. Schramm, Cosmological constraints on superweak particles, Phys. Rev. Lett.43 (1979) 239 [SPIRES].
[39] E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z’ physics with early LHC data, Phys. Rev.D 83 (2011) 075012 [arXiv:1010.6058] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.