×

Surface topography formation in a region of plate collision: mathematical modeling. (English. Russian original) Zbl 1298.74169

J. Appl. Mech. Tech. Phys. 53, No. 4, 577-588 (2012); translation from Prikl. Mekh. Tekh. Fiz. 53, No. 4, 124-137 (2012).
Summary: The collision of earth’s crustal plates is modeled mathematically based on a numerical solution of the equations of deformable solid mechanics using a finite element method with the MSC software. The interaction of the plates with each other and with the mantle is described by the solution of the contact problem with an unknown contact boundary between the solids considered. The mantle material is assumed to be ideal elastic-plastic with the Huber-Mises yield surface, and the properties of the plate material are described using an elastic-plastic model with the Drucker-Prager parabolic yield function which takes into account fracture in the tensile stress region. The results of the mathematical modeling show that the surface profiles of the plates in the region of their collision are consistent, both qualitatively and quantitatively, to the surface topography observed in nature under similar conditions.

MSC:

74L05 Geophysical solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics
86A60 Geological problems

Software:

MARC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1992) [in Russian].
[2] V. I. Lobkovskii, A. M. Nikishin, and V. E. Khain, Modern Problems of Geotectonics and Geodynamics (Nauchnyi Mir, 2004) [in Russian].
[3] L. N. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (Izd. Geo, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2001) [in Russian].
[4] B. L. N. Kennett and H.-P. Bunge, Geophysical Continua (Cambridge Univ. Press, Cambridge, 2008).
[5] S. D. King, ”Subduction Zones: Observations and Geodynamic Models,” Phys. Earth Planet. Int. 127, 9–24 (2001). · doi:10.1016/S0031-9201(01)00218-7
[6] C. Doglioni, E. Carminato, M. Cuffaro, and D. Scrocca, ”Subduction Kinematics and Dynamic Constraints,” Earth-Sci. Rev. 83, 125–175 (2007). · doi:10.1016/j.earscirev.2007.04.001
[7] N. I. Seliverstov, Geodynamics of the Junction Zones of the Kurily-Kamchatka and Aleutian Island Arcs (Izd. Kam. Gos. Univ., Petropavlovsk-Kamchatsky, 2009) [in Russian].
[8] A. I. Shemenda, Subduction: Insights from Physical Modeling (Kluwer, Dordrecht, 1994).
[9] E. Willingshofer and D. Sokoutis, ”Decoupling along Plate Boundaries: Key Variable Controlling the Mode of Deformation and the Geometry of Collisional Mountain Belts,” Geology 37(1), 39–42 (2009). · doi:10.1130/G25321A.1
[10] S. N. Korobeinikov, P. O. Polyansky, I. I. Likhanov, et al. ”Mathematical Modeling of Overthrusting Fault As a Cause of Formation of Andalusite-Kyanite Metamorphic Zoning in the Yenisei Ridge,” Dokl. Akad. Nauk 408(4), 512–516 (2006) [Dokl. Earth Sci. 408 (4), 652–656 (2006)].
[11] S. N. Korobeinikov V. V. Reverdatto, O. P. Polyansky, et al., ”Estimation of Geometric Nonlinearity in the Mathematical Modeling of Tectonic Processes,” Vychisl. Metod. Programm. 7(2), 130–145 (2006).
[12] S. N. Korobeinikov, P. O. Polyansky, V. G. Sverdlova, et al., ”Computer Modeling of Underthrusting and Subduction under Conditions of Gabbro-Eclogite Transition in the Mantle,” Dokl. Akad. Nauk 20(5), 654–658 (2008) [Dokl. Earth Sci. 421 (5), 724–728 (2008)]. · Zbl 1164.86016
[13] S. N. Korobeinikov V. V. Reverdatto, O. P. Polyansky, et al., ”Computer Simulation of Underthrusting and Subduction Due to Collision of Slabs,” Sib. Zh. Vychisl. Mat. 12(1), 71–90 (2009) [Num. Anal. Appl. 2 (1), 58–73 (2009)]. · Zbl 1212.86061
[14] D. P. Polansky, S. N. Korobeynikov, V. G. Sverdlova, et al., ”The Influence of Crustal Rheology on Plate Subduction Based on Numerical Modeling Results, Mathematical Modelling,” Dokl. Akad. Nauk 430(4), 518–522 (2010) [Dokl. Earth Sci. 430 (2), 158–162 (2010)].
[15] S. N. Korobeinikov, V. V. Reverdatto, O. P. Polyansky, et al. ”Influence of the Choice of a Rheological Law on Computer Simulation Results of Slab Subduction,” Sib. Zh. Vychisl. Mat. 14(1), 71–90 (2011) [Num. Anal. Appl. 4 (1), 56–70 (2011)].
[16] Zh. Wang, B. Xu, Y. Zhou, et al., ”Two-Dimensional Numerical Modelling Research on Continent Subduction Dynamics,” Acta Geologica Sinica 78(1), 313–319 (2004).
[17] F. A. Capitano, G. Morra, and S. Goes, ”Dynamic Models of Downgoing Plate-Buoyancy Driven Subduction: Subduction Motions and Energy Dissipation,” Earth Planet. Sci. Lett. 262, 284–297 (2007). · doi:10.1016/j.epsl.2007.07.039
[18] F. A. Capitano, S. Goes, G. Morra, and D. Giardini, ”Signatures of Downgoing Plate-Buoyancy Driven Subductionin Motions and Seismic Coupling at Major Subduction Zones,” Earth Planet. Sci. Lett. 262, 298–306 (2007). · doi:10.1016/j.epsl.2007.07.046
[19] S. Zlotnik, P. Diez, M. Fernandez, and J. Verges, ”Numerical Modelling of Tectonic Plates Subduction Using X-FEM,” Comput. Methods Appl. Mech. Eng. 196, 4283–4293 (2007). · Zbl 1173.74356 · doi:10.1016/j.cma.2007.04.006
[20] D. F. Keppie, C. A. Currie, and C. Warren, ”Subduction ErosionModes: Comparing Finite Element Numerical Models with the Geological Record,” Earth Planet. Sci. Lett. 287, 241–254 (2009). · doi:10.1016/j.epsl.2009.08.009
[21] Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1988) [in Russian]. · Zbl 0648.73002
[22] MARC Users Guide. V. A. Theory and Users Information (MSC.Software Corp., Santa Ana, 2005).
[23] K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, 1996).
[24] O. C. Zeinkiewicz and R. L. Taylor, The Finite Element Method (Butterworth-Heinemann, Oxford, 2000).
[25] S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].
[26] A. I. Golovanov amd D. V. Berezhnoi, Finite Element Method in the Mechanics of Deformable Solids (DAS, Kazan’, 2001) [in Russian].
[27] A. Curnier, Computational Methods in Solid Mechanics (Kluwer, Dordrecht, 1994). · Zbl 0815.73003
[28] J. Bonnet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge Univ. Press, Cambridge, 1997).
[29] M. Kleiber, Incremental Finite Element Modelling in Non-Linear Solid Mechanics (Ellis Horwood, Chichester, 1989). · Zbl 0699.73050
[30] G. Strang and G. J. Fix, An Analysis of the Finite Element Method (Prentice Hall, Englewood Cliffs, 1973). · Zbl 0356.65096
[31] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Englewood Cliffs, 1987). · Zbl 0634.73056
[32] R. A. Hill, ”A General Theory of Uniqueness and Stability in Elastic-Plastic Solids,” J. Mech. Phys. Solids 6(3), 236–249 (1958). · Zbl 0091.40301 · doi:10.1016/0022-5096(58)90029-2
[33] R. M. McMeeking and J. R. Rice, ”Finite Element Formulations for Problems of Large Elastic-Plastic Deformation,” Int. J. Solids Struct. 11, 601–616 (1975). · Zbl 0303.73062 · doi:10.1016/0020-7683(75)90033-5
[34] A. Nadai, Theory of Flow and Fracture of Solids (McGraw Hill, New York, 1950).
[35] A. P. Boresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (John Wiley and Sons, New York, 1993). · Zbl 0616.73086
[36] P. Duxbury and X. Li, ”Development of Elasto-plastic Material Models in a Natural Coordinate System,” Comput. Methods Appl. Mech. Eng. 135, 283–306 (1996). · Zbl 0890.73020 · doi:10.1016/0045-7825(95)00950-7
[37] M. Kojić and K.-J. Bathe, Inelastic Analysis of Solids and Structures (Springer, Berlin, 2005).
[38] P. V. Makarov, I. Yu. Smolin, Yu. P. Stefanov, et al., Nonlinear Mechanics of Geomaterials and Geoenvironments (Izd. Geo, Novosibirsk, 2007) [in Russian].
[39] S. J. Hiermaier, Structures under Crush and Impact: Continuum Mechanics, Discretization and Experimental Characterization (Springer, New York, 2008).
[40] F. Irgens, Continuum Mechanics (Springer, Berlin, 2008).
[41] C. D. Brown and R. J. Phillips, ”Crust-Mantle Decoupling by Flexure of Continental Litisphere,” J. Geophys. Res. 103,(B6), 13.221–13.237 (2000). · doi:10.1029/2000JB900069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.