×

Stackelberg strategies for wastewater management. (English) Zbl 1309.91104

Summary: Management of wastewater has become a critical environmental problem during past decades, specially for the particular case of urban areas. In this work we use numerical simulation, and combine optimal control theory of partial differential equations with multi-objective optimization techniques to formulate and solve this type of problems from a new original hierarchical viewpoint with a leader and a follower (Stackelberg strategies). Specifically, the main aim of this paper deals with applying these Stackelberg techniques to the environmental problem related to determining the optimal location and the optimal purification profile when building a new treatment plant in a wastewater depuration system. We analyze the control problem, introduce a numerical algorithm, and show the possibilities of our approach by solving a realistic problem posed in the Estuary of Vigo (NW Spain).

MSC:

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
91A65 Hierarchical games (including Stackelberg games)
49N90 Applications of optimal control and differential games

Software:

QUAL2Kw
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Marchuk, G. I., Mathematical Models in Environmental Problems (1986), Elsevier: Elsevier New York · Zbl 0597.90001
[2] Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M. E., Theoretical and numerical analysis of an optimal control problem related to wastewater treatment, SIAM J. Control Optim., 38, 1534-1553 (2000) · Zbl 0961.49002
[3] Alvarez-Vázquez, L. J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M. E., Mathematical analysis of the optimal location of wastewater outfalls, IMA J. Appl. Math., 67, 23-39 (2002) · Zbl 1037.91073
[4] Alvarez-Vázquez, L. J.; Balsa-Canto, E.; Martínez, A., Optimal design and operation of a wastewater purification system, Math. Comput. Simul., 79, 668-682 (2008) · Zbl 1151.92031
[5] Alvarez-Vázquez, L. J.; García-Chan, N.; Martínez, A.; Vázquez-Méndez, M. E., SOS: a numerical simulation toolbox for decision support related to wastewater discharges and their environmental impact, Environ. Modell. Softw., 26, 543-545 (2011)
[6] Alvarez-Vázquez, L. J.; García-Chan, N.; Martínez, A.; Vázquez-Méndez, M. E., Multi-objective Pareto-optimal control: an application to wastewater management, Comput. Optim. Appl., 46, 135-157 (2010) · Zbl 1219.90150
[7] Alvarez-Vázquez, L. J.; García-Chan, N.; Martínez, A.; Vázquez-Méndez, M. E., Improving the environmental impact of wastewater discharges with a specific simulation-optimization software, J. Comput. Appl. Math., 246, 320-328 (2013) · Zbl 1267.91006
[8] García-Chan, N.; Muñoz-Sola, R.; Vázquez-Méndez, M. E., Nash equilibrium for a multiobjective control problem related to wastewater management, ESAIM Control Optim. Calc. Var., 15, 581-588 (2009)
[9] von Stackelberg, H., The Theory of Market Economy (1952), Oxford University Press: Oxford University Press Oxford
[10] Julien, L. A.; Tricou, F., Market price mechanisms and Stackelberg general equilibria: an example, Bull. Econ. Res., 64, 239-252 (2012) · Zbl 1254.91066
[11] Lions, J. L., Some remarks on Stackelberg’s optimization, Math. Models Methods Appl. Sci., 4, 477-487 (1994) · Zbl 0816.49014
[12] Díaz, J. I.; Lions, J. L., On the approximate controllability of Stackelberg-Nash strategies, (Ocean Circulation and Pollution Control—A Mathematical and Numerical Investigation (2004), Springer: Springer Berlin)
[13] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer: Springer New York · Zbl 1220.46002
[14] Cea, J., Optimisation: Theorie et Algorithmes (1971), Dunod: Dunod Paris · Zbl 0211.17402
[15] Ladyzenskaja, O. A.; Solonnikov, V. A.; Uralceva, N. N., Linear and Quasilinear Equations of Parabolic Type (1968), Amer. Math. Soc.: Amer. Math. Soc. Providence
[16] Pironneau, O., Finite Element Methods for Fluids (1989), Wiley: Wiley Chichester · Zbl 0665.73059
[17] Birgin, E. G.; Martínez, J. M.; Raydan, M., Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim., 10, 1196-1211 (2000) · Zbl 1047.90077
[18] Alvarez-Vázquez, L. J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M. E., A wastewater treatment problem: study of the numerical convergence, J. Comput. Appl. Math., 140, 27-39 (2002) · Zbl 1019.76025
[19] Han, S. P., A globally convergent method for nonlinear optimization, J. Optim. Theory Appl., 22, 297-309 (1977) · Zbl 0336.90046
[20] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 308-313 (1965) · Zbl 0229.65053
[21] Lagarias, J. C.; Reeds, J. A.; Wright, M. H.; Wright, P. E., Convergence properties of the Nelder-Mead simplex algorithm in low dimensions, SIAM J. Optim., 9, 112-147 (1998) · Zbl 1005.90056
[22] Kelley, C. T., Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition, SIAM J. Optim., 10, 43-55 (1999) · Zbl 0962.65048
[23] Alvarez-Vázquez, L. J.; Martínez, A.; Muñoz-Sola, R.; Rodríguez, C.; Vázquez-Méndez, M. E., The water conveyance problem: optimal purification of polluted waters, Math. Models Methods Appl. Sci., 15, 1393-1416 (2005) · Zbl 1089.49037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.