×

The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model. (English) Zbl 1303.81232

Summary: Within the framework of the Lee-Wick Standard Model (LWSM) we investigate Higgs pair production \(gg \to h_{0}h_{0}\), \( gg \to {h_0}{\tilde{p}_0} \) and top pair production \( gg \to \bar{t}t \) at the Large Hadron Collider (LHC), where the neutral particles from the Higgs sector (\(h_{0}\), \( {\tilde{h}_0} \) and \( {\tilde{p}_0})\) appear as possible resonant intermediate states. Depending on whether the LW Higgs state is below or above the top pair threshold either the \(hh\) or \(tt\)-channel are dominant and therefore of main interest. We investigate the signal \( gg \to {h_0}{h_0} \to \bar{b}b\gamma \gamma \) and we find that the LW Higgs, depending on its mass-range, can be seen not long after the LHC upgrade in 2012. In \( gg \to \bar{t}t \) the LW states, due to the wrong-sign propagator and negative width, lead to a dip-peak structure instead of the usual peak-dip structure which gives a characteristic signal especially for low-lying LW Higgs states. We comment on the LWSM and the forward-backward asymmetry in view of the measurement at the TeVatron. Furthermore, we present a technique which reduces the hyperbolic diagonalization to standard diagonalization methods. We clarify issues of spurious phases in the Yukawa sector.

MSC:

81V22 Unified quantum theories
81U35 Inelastic and multichannel quantum scattering
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. Grinstein, D. O’Connell and M.B. Wise, The Lee-Wick standard model, Phys. Rev.D 77 (2008) 025012 [arXiv:0704.1845] [INSPIRE].
[2] T. Lee and G. Wick, Negative metric and the unitarity of the S matrix, Nucl. Phys.B 9 (1969) 209 [INSPIRE]. · Zbl 0165.58203
[3] T. Lee and G. Wick, Finite theory of quantum electrodynamics, Phys. Rev.D 2 (1970) 1033 [INSPIRE]. · Zbl 1227.81252
[4] T.D. Lee, A finite theory of quantum electrodynamics, in the proceedings of the International School of Physics “Ettore Majorana”, July 1-19, Erice, Italy (1970).
[5] Coleman, S.; Zichichi, A. (ed.), Acausality (1970), New York U.S.A.
[6] B. Grinstein, D. O’Connell and M.B. Wise, Causality as an emergent macroscopic phenomenon: the Lee-Wick O(N) model, Phys. Rev.D 79 (2009) 105019 [arXiv:0805.2156] [INSPIRE].
[7] R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys.B 12 (1969) 281 [INSPIRE].
[8] E. Alvarez, L. Da Rold, C. Schat and A. Szynkman, Vertex displacements for acausal particles: testing the Lee-Wick Standard Model at the LHC, JHEP10 (2009) 023 [arXiv:0908.2446] [INSPIRE].
[9] D.G. Boulware and D.J. Gross, LEe-Wick indefinite metric quantization: a functional integral approach, Nucl. Phys.B 233 (1984) 1 [INSPIRE].
[10] A. van Tonder, Non-perturbative quantization of phantom and ghost theories: relating definite and indefinite representations, Int. J. Mod. Phys.A 22 (2007) 2563 [hep-th/0610185] [INSPIRE]. · Zbl 1138.81040
[11] A. van Tonder, Unitarity, Lorentz invariance and causality in Lee-Wick theories: an asymptotically safe completion of QED, arXiv:0810.1928 [INSPIRE].
[12] B. Fornal, B. Grinstein and M.B. Wise, Lee-Wick theories at high temperature, Phys. Lett.B 674 (2009) 330 [arXiv:0902.1585] [INSPIRE].
[13] B. Grinstein, D. O’Connell and M.B. Wise, Massive vector scattering in Lee-Wick gauge theory, Phys. Rev.D 77 (2008) 065010 [arXiv:0710.5528] [INSPIRE].
[14] J.R. Espinosa, B. Grinstein, D. O’Connell and M.B. Wise, Neutrino masses in the Lee-Wick standard model, Phys. Rev.D 77 (2008) 085002 [arXiv:0705.1188] [INSPIRE].
[15] B. Grinstein and D. O’Connell, One-loop renormalization of Lee-Wick gauge theory, Phys. Rev.D 78 (2008) 105005 [arXiv:0801.4034] [INSPIRE].
[16] J.R. Espinosa and B. Grinstein, Ultraviolet properties of the Higgs sector in the Lee-Wick Standard Model, Phys. Rev.D 83 (2011) 075019 [arXiv:1101.5538] [INSPIRE].
[17] C.D. Carone and R.F. Lebed, A higher-derivative Lee-Wick Standard Model, JHEP01 (2009) 043 [arXiv:0811.4150] [INSPIRE]. · Zbl 1243.81224
[18] C.D. Carone, Higher-derivative Lee-Wick unification, Phys. Lett.B 677 (2009) 306 [arXiv:0904.2359] [INSPIRE].
[19] A. Rodigast and T. Schuster, No Lee-Wick fields out of gravity, Phys. Rev.D 79 (2009) 125017 [arXiv:0903.3851] [INSPIRE].
[20] Y.-F. Cai, T.-t. Qiu, R. Brandenberger and X.-m. Zhang, A nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory, Phys. Rev.D 80 (2009) 023511 [arXiv:0810.4677] [INSPIRE].
[21] T.G. Rizzo, Searching for Lee-Wick gauge bosons at the LHC, JHEP06 (2007) 070 [arXiv:0704.3458] [INSPIRE].
[22] T.G. Rizzo, Unique identification of Lee-Wick gauge bosons at linear colliders, JHEP01 (2008) 042 [arXiv:0712.1791] [INSPIRE].
[23] T.R. Dulaney and M.B. Wise, Flavor changing neutral currents in the Lee-Wick Standard Model, Phys. Lett.B 658 (2008) 230 [arXiv:0708.0567] [INSPIRE].
[24] T.E. Underwood and R. Zwicky, Electroweak precision data and the Lee-Wick Standard Model, Phys. Rev.D 79 (2009) 035016 [arXiv:0805.3296] [INSPIRE].
[25] R. Chivukula, A. Farzinnia, R. Foadi and E.H. Simmons, Custodial isospin violation in the Lee-Wick Standard Model, Phys. Rev.D 81 (2010) 095015 [arXiv:1002.0343] [INSPIRE].
[26] F. Krauss, T. Underwood and R. Zwicky, The process gg → h(0) → γγ in the Lee-Wick Standard Model, Phys. Rev.D 77 (2008) 015012 [Erratum ibid.D 83 (2011) 019902] [arXiv:0709.4054] [INSPIRE].
[27] C.D. Carone and R. Primulando, Constraints on the Lee-Wick Higgs sector, Phys. Rev.D 80 (2009) 055020 [arXiv:0908.0342] [INSPIRE].
[28] G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgs → γγ beyond the Standard Model, JHEP06 (2009) 054 [arXiv:0901.0927] [INSPIRE].
[29] E. Alvarez, E.C. Leskow and J. Zurita, Collider bounds on Lee-Wick Higgs bosons, Phys. Rev.D 83 (2011) 115024 [arXiv:1104.3496] [INSPIRE].
[30] M. Veltman, Second threshold in weak interactions, Acta Phys. Polon.B 8 (1977) 475 [INSPIRE].
[31] CDF collaboration, T. Aaltonen et al., Invariant mass distribution of jet pairs produced in association with a W boson in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV, Phys. Rev. Lett.106 (2011) 171801 [arXiv:1104.0699] [INSPIRE].
[32] U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev.D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
[33] T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
[34] D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett.B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
[35] R. Barcelo and M. Masip, Extra Higgs bosons in \(t\bar{t}\) production at the LHC, Phys. Rev.D 81 (2010) 075019 [arXiv:1001.5456] [INSPIRE].
[36] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys.G 37 (2010) 075021 [INSPIRE].
[37] E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys.B 309 (1988) 282 [INSPIRE].
[38] T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett.104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].
[39] U. Baur and L. Orr, Searching for \(t\bar{t}\) resonances at the Large Hadron Collider, Phys. Rev.D 77 (2008) 114001 [arXiv:0803.1160] [INSPIRE].
[40] U. Baur and L. Orr, High pTtop quarks at the Large Hadron Collider, Phys. Rev.D 76 (2007) 094012 [arXiv:0707.2066] [INSPIRE].
[41] V. Barger, T. Han and D.G. Walker, Top quark pairs at high invariant mass: a model-independent discriminator of new physics at the LHC, Phys. Rev. Lett.100 (2008) 031801 [hep-ph/0612016] [INSPIRE].
[42] D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett.101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].
[43] A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J.C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
[44] R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP01 (2009) 047 [arXiv:0712.2355] [INSPIRE].
[45] K.J. Peters, A primer on partial wave analysis, Int. J. Mod. Phys.A 21 (2006) 5618 [hep-ph/0412069] [INSPIRE].
[46] M. Harada, F. Sannino and J. Schechter, Simple description of ππ scattering to 1-GeV, Phys. Rev.D 54 (1996) 1991 [hep-ph/9511335] [INSPIRE].
[47] CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev.D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].
[48] D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, arXiv:1107.4995 [INSPIRE].
[49] Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E. Wagner, Forward-backward asymmetry of top quark pair production, Phys. Rev.D 81 (2010) 114004 [arXiv:1003.3461] [INSPIRE].
[50] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. · Zbl 1369.81126
[51] S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
[52] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE]. · Zbl 0994.81082
[53] A. Semenov, LanHEP: a package for automatic generation of Feynman rules in field theory. Version 2.0, hep-ph/0208011 [INSPIRE]. · Zbl 1198.81021
[54] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[55] The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [INSPIRE]. · Zbl 1390.81725
[56] E. Cogneras and D. Pallin, Generic \(t\bar{t}\) resonance search with the ATLAS detector, PHYS-PUB-2006-033 (2006).
[57] G. Azuelos, D. Cavalli, H. Przysiezniak and L. Vacavant, Search for the radion using the ATLAS detector, Eur. Phys. J. DirectC 4 (2002) 16.
[58] S. Gennai, Search for the radion decay into a Higgs boson pair with γγ + bb, ττ + bb and bb + bb final states, Czech. J. Phys.55 (2005) B137.
[59] D. Dominici, G. Dewhirst, S. Gennai, L. Fano and A. Nikitenko, Search for the radion decay ϕ → HH with \(\gamma \gamma + B\bar{B} , \tau \tau + B\bar{B}\) and \(B\bar{B} + B\bar{B}\) final states in CMS, prepared for Lake Louise Winter Institute 2004 on Fundamental Interactions (LLWI2004), February 15-12, Lake Louise, Alberta, Canada (2004).
[60] E. Richter-Was et al., Minimal supersymmetric standard model Higgs rates and backgrounds in ATLAS, Int. J. Mod. Phys.A 13 (1998) 1371 [INSPIRE].
[61] M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and H → hh decays: two LHC search paths for a hidden sector Higgs boson, JHEP03 (2007) 036 [hep-ph/0701035] [INSPIRE].
[62] ATLAS collaboration, Combination of the searches for the Higgs boson in   1 fb1of data taken with the ATLAS detector at 7 TeV center-of-mass energy, ATLAS-CONF-2011-112 (2011).
[63] CMS collaboration, SM Higgs combination, PAS-HIG-11-011 (2011).
[64] B. Altunkaynak, M. Holmes, P. Nath, B.D. Nelson and G. Peim, SUSY discovery potential and benchmarks for early runs at \(\sqrt{s} = 7\) TeV at the LHC, Phys. Rev.D 82 (2010) 115001 [arXiv:1008.3423] [INSPIRE].
[65] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
[66] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP03 (2008) 038 [arXiv:0709.1027] [INSPIRE].
[67] M. Schonherr and F. Krauss, Soft photon radiation in particle decays in SHERPA, JHEP12 (2008) 018 [arXiv:0810.5071] [INSPIRE].
[68] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP05 (2009) 053 [arXiv:0903.1219] [INSPIRE].
[69] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP02 (2002) 044 [hep-ph/0109036] [INSPIRE].
[70] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP12 (2008) 039 [arXiv:0808.3674] [INSPIRE].
[71] A. Buckley et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
[72] M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett.B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
[73] A. Belyaev, M. Drees, O.J. Eboli, J. Mizukoshi and S. Novaes, Supersymmetric Higgs pair production at hadron colliders, Phys. Rev.D 60 (1999) 075008 [hep-ph/9905266] [INSPIRE].
[74] R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun.64 (1991) 345 [INSPIRE].
[75] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [INSPIRE].
[76] R. Gröber, Higgs pair production in the composite Higgs model, Karlsruhe Institute of Technology, unpublished.
[77] T. Hahn, Routines for the diagonalization of complex matrices, physics/0607103 [INSPIRE].
[78] E. Alvarez, L. Da Rold, C. Schat and A. Szynkman, Electroweak precision constraints on the Lee-Wick Standard Model, JHEP04 (2008) 026 [arXiv:0802.1061] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.