×

A simple and efficient preconditioning scheme for Heaviside enriched XFEM. (English) Zbl 1311.74124

Summary: The extended finite element method (XFEM) is an approach for solving problems with non-smooth solutions, which arise from geometric features such as cracks, holes, and material inclusions. In the XFEM, the approximate solution is locally enriched to capture the discontinuities without requiring a mesh which conforms to the geometric features. One drawback of the XFEM is that an ill-conditioned system of equations results when the ratio of volumes on either side of the interface in an element is small. Such interface configurations are often unavoidable, in particular for moving interface problems on fixed meshes. In general, the ill-conditioning reduces the performance of iterative linear solvers and impedes the convergence of solvers for nonlinear problems. This paper studies the XFEM with a Heaviside enrichment strategy for solving problems with stationary and moving material interfaces. A generalized formulation of the XFEM is combined with the level set method to implicitly define the embedded interface geometry. In order to avoid the ill-conditioning, a simple and efficient scheme based on a geometric preconditioner and constraining degrees of freedom to zero for small intersections is proposed. The geometric preconditioner is computed from the nodal basis functions, and therefore may be constructed prior to building the system of equations. This feature and the low-cost of constructing the preconditioning matrix makes it well suited for nonlinear problems with fixed and moving interfaces. It is shown by numerical examples that the proposed preconditioning scheme performs well for discontinuous problems and \(C^0\)-continuous problems with both the stabilized Lagrange and Nitsche methods for enforcing the continuity constraint at the interface. Numerical examples are presented which compare the condition number and solution error with and without the proposed preconditioning scheme. The results suggest that the proposed preconditioning scheme leads to condition numbers similar to that of a body-fitted mesh using the traditional finite element method without loss of solution accuracy.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201-204:91-111 · Zbl 1239.74093 · doi:10.1016/j.cma.2011.09.012
[2] Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64:1033-1056 · Zbl 1122.74499 · doi:10.1002/nme.1386
[3] Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56:609-635 · Zbl 1038.74041 · doi:10.1002/nme.686
[4] Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70:10-17 · Zbl 1110.74391 · doi:10.1115/1.1526599
[5] Chessa J, Smolinski P, Belytschko T (2002) The extended finite element method (xfem) for solidification problems. Int J Numer Methods Eng 53:1959-1977 · Zbl 1003.80004 · doi:10.1002/nme.386
[6] Choi Y, Hulsen M, Meijer H (2012) Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method. Comput Fluids 57:183-194 · Zbl 1365.76111 · doi:10.1016/j.compfluid.2011.12.020
[7] Ewing R, Iliev O, Lazarov R (2001) A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients. SIAM J Sci Comput 23:1335-1351 · Zbl 0999.65112 · doi:10.1137/S1064827599353877
[8] Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257-1275 · Zbl 1060.74665 · doi:10.1016/j.cma.2003.12.019
[9] Fries TP (2008) A corrected X-FEM approximation without problems in blending elements. Int J Numer Methods Eng 75:503-532 · Zbl 1195.74173 · doi:10.1002/nme.2259
[10] Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253-304 · Zbl 1202.74169
[11] Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82:537-563 · Zbl 1188.74056
[12] Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523-3540 · Zbl 1068.74076 · doi:10.1016/j.cma.2003.12.041
[13] Hansbo P, Larson M, Zahedi S (2014) A cut finite element method for a stokes interface problem. Appl Numer Math 85:90-114 · Zbl 1299.76136
[14] Juntunen M, Stenberg R (2008) Nitsche’s method for general boundary conditions. Math Comput 78:1353-1374 · Zbl 1198.65223 · doi:10.1090/S0025-5718-08-02183-2
[15] Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46:311-326 · Zbl 1274.76251 · doi:10.1007/s00158-012-0782-8
[16] Lang C, Doostan A, Maute K (2013) Extended stochastic fem for diffusion problems with uncertain material interfaces. Comput Mech 51:1031-1049 · Zbl 1366.74071 · doi:10.1007/s00466-012-0785-8
[17] Li S, Ghosh S (2007) Modeling interfacial debonding and matrix cracking in fiber reinforced composites by the extended Voronoi cell FEM. Finite Elem Anal Des 43:397-410 · Zbl 1150.17006 · doi:10.1016/j.finel.2006.11.010
[18] Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185-197 · Zbl 1110.74391
[19] Mandel J, Brezina M (1996) Balancing domain decomposition for problems with large jumps in coefficients. Math Comput 65:1387-1401 · Zbl 0853.65129 · doi:10.1090/S0025-5718-96-00757-0
[20] Menk A, Bordas S (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85:1609-1632 · Zbl 1217.74128 · doi:10.1002/nme.3032
[21] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131-150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[22] Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163-3177 · Zbl 1054.74056 · doi:10.1016/S0045-7825(03)00346-3
[23] Osher S, Sethian J (1988) Fronts propogating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12-49 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[24] Reusken A (2008) Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput Vis Sci 11:293-305 · doi:10.1007/s00791-008-0099-8
[25] Rüberg T, Cirak F (2012) Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput Vis Sci 209-212:266-283 · Zbl 1243.76031
[26] Saad Y, Schultz M (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856-869 · Zbl 0599.65018 · doi:10.1137/0907058
[27] Sauerland H, Fries TP (2013) The stable XFEM for two-phase flows. Comput Fluids 87:41-49 · Zbl 1290.76073 · doi:10.1016/j.compfluid.2012.10.017
[28] Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge · Zbl 0973.76003
[29] Soghrati S, Aragón A, Duarte C, Geubelle P (2010) An interface-enriched generalized finite element method for problems with discontinuous gradient fields. Int J Numer Methods Eng 00:1-19
[30] Soghrati S, Thakre P, White S, Sottos N, Geubelle P (2012) Computational modeling and design of actively-cooled microvascular materials. Int J Heat Mass Transf 55:5309-5321 · doi:10.1016/j.ijheatmasstransfer.2012.05.041
[31] Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63:139-148 · Zbl 0856.65130 · doi:10.1016/0377-0427(95)00057-7
[32] Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite element method. Comput Methods Appl Mech Eng 190:6183-6200 · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[33] Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58:1321-1346 · Zbl 1032.74685 · doi:10.1002/nme.820
[34] Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221-242 · Zbl 0756.76048 · doi:10.1016/0045-7825(92)90141-6
[35] Tran A, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2010) A multiple level set approach to prevent numberical artefacts in complex microstructures with nearby inclusions within XFEM. Int J Numer Methods Eng 85:1436-1459 · Zbl 1217.74138 · doi:10.1002/nme.3025
[36] Villanueva C, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-d structures. Comput Mech 54(1):133-150 · Zbl 1384.74046
[37] Wadbro E, Zahedi S, Kreiss G, Berggren M (2013) A uniformly well-conditioned, unfitted Nitsche method for interface problems. BIT Numer Math 53:791-820 · Zbl 1279.65134
[38] Zabaras N, Ganapathysubramanian B, Tan L (2006) Modelling dendritic solidification with melt convection using the extended finite element method. J Comput Phys 218:200-227 · Zbl 1158.80318 · doi:10.1016/j.jcp.2006.02.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.