×

Loop-induced photon spectral lines from neutralino annihilation in the NMSSM. (English) Zbl 1306.81398

Summary: We have computed the loop-induced processes of neutralino annihilation into two photons and, for the first time, into a photon and a \(Z^{0}\) boson in the framework of the NMSSM. The photons produced from these radiative modes are monochromatic and possess a clear “smoking gun” experimental signature. This numerical analysis has been done with the help of the SloopS code, initially developed for automatic one-loop calculation in the MSSM. We have computed the rates for different benchmark points coming from SUGRA and GMSB soft SUSY breaking scenarios and compared them with the MSSM. We comment on how this signal can be enhanced, with respect to the MSSM, especially in the low mass region of the neutralino. We also discuss the possibility of this observable to constrain the NMSSM parameter space, taking into account the latest limits from the FERMI collaboration on these two modes.

MSC:

81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81U99 Quantum scattering theory
83E50 Supergravity
81R40 Symmetry breaking in quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] The CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].
[2] CoGeNT collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett.106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].
[3] C. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett.107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].
[4] G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, arXiv:1109.0702 [INSPIRE].
[5] XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett.107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].
[6] R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J.C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].
[7] D.A. Vasquez, G. Bélanger, C. Boehm, A. Pukhov and J. Silk, Can neutralinos in the MSSM and NMSSM scenarios still be light?, Phys. Rev.D 82 (2010) 115027 [arXiv:1009.4380] [INSPIRE].
[8] D.A. Vasquez, G. Bélanger and C. Boehm, Revisiting light neutralino scenarios in the MSSM, Phys. Rev.D 84 (2011) 095015 [arXiv:1108.1338] [INSPIRE].
[9] D. Das and U. Ellwanger, Light dark matter in the NMSSM: upper bounds on direct detection cross sections, JHEP09 (2010) 085 [arXiv:1007.1151] [INSPIRE].
[10] P. Draper, T. Liu, C.E. Wagner, L.-T. Wang and H. Zhang, Dark light Higgs, Phys. Rev. Lett.106 (2011) 121805 [arXiv:1009.3963] [INSPIRE].
[11] R. Kappl, M. Ratz and M.W. Winkler, Light dark matter in the singlet-extended MSSM, Phys. Lett.B 695 (2011) 169 [arXiv:1010.0553] [INSPIRE].
[12] J.-J. Cao et al., Light dark matter in NMSSM and implication on Higgs phenomenology, Phys. Lett.B 703 (2011) 292 [arXiv:1104.1754] [INSPIRE].
[13] N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the Minimal Supersymmetric extension of the Standard Model with light neutralinos, Phys. Rev.D 83 (2011) 015001 [arXiv:1011.4743] [INSPIRE].
[14] L. Calibbi, T. Ota and Y. Takanishi, Light neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments, JHEP07 (2011) 013 [arXiv:1104.1134] [INSPIRE].
[15] U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept.496 (2010) 1 [arXiv:0910.1785] [INSPIRE].
[16] F. Ferrer, L.M. Krauss and S. Profumo, Indirect detection of light neutralino dark matter in the NMSSM, Phys. Rev.D 74 (2006) 115007 [hep-ph/0609257] [INSPIRE].
[17] A. Abdo et al., Fermi LAT search for photon lines from 30 to 200 GeV and dark matter implications, Phys. Rev. Lett.104 (2010) 091302 [arXiv:1001.4836] [INSPIRE].
[18] S. Ahlen et al., An antimatter spectrometer in space, Nucl. Instrum. Meth.A 350 (1994) 351 [INSPIRE].
[19] J. Alcaraz et.al, The Alpha Magnetic Spectrometer (AMS) , Nucl. Instrum. Meth.A 478 (2002) 119 .
[20] Alpha Magnetic Spectrometer, http://ams.cern.ch/.
[21] L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys.B 504 (1997) 27 [hep-ph/9706232] [INSPIRE].
[22] Z. Bern, P. Gondolo and M. Perelstein, Neutralino annihilation into two photons, Phys. Lett.B 411 (1997) 86 [hep-ph/9706538] [INSPIRE].
[23] P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev.D 57 (1998) 1962 [hep-ph/9707333] [INSPIRE].
[24] G. Gounaris, J. Layssac, P. Porfyriadis and F. Renard, Neutralino-neutralino annihilation to photon and gluon pairs in MSSM models, Phys. Rev.D 69 (2004) 075007 [hep-ph/0309032] [INSPIRE].
[25] F. Boudjema, A. Semenov and D. Temes, Self-annihilation of the neutralino dark matter into two photons or a Z and a photon in the MSSM, Phys. Rev.D 72 (2005) 055024 [hep-ph/0507127] [INSPIRE].
[26] A. Djouadi et al., Benchmark scenarios for the NMSSM, JHEP07 (2008) 002 [arXiv:0801.4321] [INSPIRE].
[27] U. Ellwanger, C.-C. Jean-Louis and A. Teixeira, Phenomenology of the general NMSSM with gauge mediated supersymmetry breaking, JHEP05 (2008) 044 [arXiv:0803.2962] [INSPIRE].
[28] N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan β and gauge invariance, Phys. Rev.D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE].
[29] N. Baro and F. Boudjema, Automatised full one-loop renormalisation of the MSSM II: the chargino-neutralino sector, the sfermion sector and some applications, Phys. Rev.D 80 (2009) 076010 [arXiv:0906.1665] [INSPIRE].
[30] N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett.B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].
[31] N. Baro, G. Chalons and S. Hao, Coannihilation with a chargino and gauge boson pair production at one-loop, AIP Conf. Proc.1200 (2010) 1067 [arXiv:0909.3263] [INSPIRE].
[32] N. Baro, F. Boudjema, G. Chalons and S. Hao, Relic density at one-loop with gauge boson pair production, Phys. Rev.D 81 (2010) 015005 [arXiv:0910.3293] [INSPIRE].
[33] G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP09 (2005) 001 [hep-ph/0505142] [INSPIRE].
[34] F. Boudjema, L.D. Ninh, S. Hao and M.M. Weber, NLO corrections to e+e− → WWZ and e+e− → ZZZ, Phys. Rev.D 81 (2010) 073007 [arXiv:0912.4234] [INSPIRE].
[35] A. Semenov, LanHEP: a package for automatic generation of Feynman rules in gauge models, hep-ph/9608488 [INSPIRE]. · Zbl 1198.81021
[36] A. Semenov, Automatic generation of Feynman rules from the Lagrangian by means of LanHEP package, Nucl. Instrum. Meth.A 389 (1997) 293 .
[37] A. Semenov, LanHEP: a package for automatic generation of Feynman rules from the Lagrangian, Comput. Phys. Commun.115 (1998) 124 [INSPIRE]. · Zbl 1006.81501
[38] A. Semenov, LanHEP: a package for automatic generation of Feynman rules in field theory. Version 2.0, hep-ph/0208011 [INSPIRE]. · Zbl 1198.81021
[39] A. Semenov, LanHEP: a package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun.180 (2009) 431 [arXiv:0805.0555] [INSPIRE]. · Zbl 1198.81021
[40] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[41] T. Hahn, New features in FormCalc 4, Nucl. Phys. Proc. Suppl.135 (2004) 333 [hep-ph/0406288] [INSPIRE].
[42] F. Boudjema and E. Chopin, Double Higgs production at the linear colliders and the probing of the Higgs selfcoupling, Z. Phys.C 73 (1996) 85 [hep-ph/9507396] [INSPIRE].
[43] G. Bélanger et al., Automatic calculations in high energy physics and Grace at one-loop, Phys. Rept.430 (2006) 117 [hep-ph/0308080] [INSPIRE].
[44] T. Hahn, LoopTools, http://www.feynarts.de/looptools/.
[45] L. Bergstrom and J. Kaplan, γ-ray lines from TeV dark matter, Astropart. Phys.2 (1994) 261 [hep-ph/9403239] [INSPIRE].
[46] U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP02 (2005) 066 [hep-ph/0406215] [INSPIRE].
[47] U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun.175 (2006) 290 [hep-ph/0508022] [INSPIRE]. · Zbl 1196.81058
[48] NMSSMTools, http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html.
[49] G. Vertongen and C. Weniger, Hunting dark matter γ-ray lines with the Fermi LAT, JCAP05 (2011) 027 [arXiv:1101.2610] [INSPIRE].
[50] J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev.D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
[51] J.F. Gunion, D. Hooper and B. McElrath, Light neutralino dark matter in the NMSSM, Phys. Rev.D 73 (2006) 015011 [hep-ph/0509024] [INSPIRE].
[52] A.V. Belikov, J.F. Gunion, D. Hooper and T.M. Tait, CoGeNT, DAMA and light neutralino dark matter, Phys. Lett.B 705 (2011) 82 [arXiv:1009.0549] [INSPIRE].
[53] J.F. Gunion, A.V. Belikov and D. Hooper, CoGeNT, DAMA and neutralino dark matter in the next-to-minimal supersymmetric standard model, arXiv:1009.2555 [INSPIRE].
[54] D. Albornoz Vasquez, G. Bélanger and C. Boehm, Astrophysical limits on light NMSSM neutralinos, Phys. Rev.D 84 (2011) 095008 [arXiv:1107.1614] [INSPIRE].
[55] L.E. Strigari, S.M. Koushiappas, J.S. Bullock and M. Kaplinghat, Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments, Phys. Rev.D 75 (2007) 083526 [astro-ph/0611925] [INSPIRE].
[56] D.T. Cumberbatch, D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri and Y.-L.S. Tsai, Is light neutralino as dark matter still viable?, arXiv:1107.1604 [INSPIRE].
[57] A. Abdo et al., Observations of Milky Way dwarf spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models, Astrophys. J.712 (2010) 147 [arXiv:1001.4531] [INSPIRE].
[58] D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun.161 (2004) 76 [hep-ph/0309015] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.