×

Two-loop QCD corrections to the helicity amplitudes for \(H \to 3\;\text{partons}\). (English) Zbl 1309.81327

Summary: Many search strategies for the Standard Model Higgs boson apply specific selection criteria on hadronic jets observed in association with the Higgs boson decay products, either in the form of a jet veto, or by defining event samples according to jet multiplicity. To improve the theoretical description of Higgs-boson-plus-jet production (and the closely related Higgs boson transverse momentum distribution), we derive the two-loop QCD corrections to the helicity amplitudes for the processes \(H \to ggg\) and \(H \to q\overline{q} g \) in an effective theory with infinite top quark mass. The helicity amplitudes are extracted from the coefficients appearing in the general tensorial structure for each process. The coefficients are derived from the Feynman graph amplitudes by means of projectors within the conventional dimensional regularization scheme. The infrared pole structure of our result agrees with the expectation from infrared factorization and the finite parts of the amplitudes are expressed in terms of one- and two-dimensional harmonic polylogarithms.

MSC:

81V22 Unified quantum theories
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
11G55 Polylogarithms and relations with \(K\)-theory

Software:

Reduze; SecDec; FORM; CHAPLIN; HPL
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration and The LEP Working Group For Higgs Boson Searches, Search for the standard model Higgs boson at LEP, Physics Letters B565 (2003) 61 [hep-ex/0306033].
[2] TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF and D0 collaboration, Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.6 fb−1of data, arXiv:1107.5518 [INSPIRE].
[3] ATLAS collaboration, Combined search for the standard model Higgs boson using up to 4.9 fb−1of pp collision data at \(\sqrt{s} = 7\,TeV\) with the ATLAS detector at the LHC, arXiv:1202.1408 [INSPIRE].
[4] CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt{s} = 7\,TeV \), arXiv:1202.1488 [INSPIRE].
[5] J.R. Ellis, M. Gaillard, D.V. Nanopoulos and C.T. Sachrajda, Is the mass of the Higgs boson about 10 GeV, Phys. Lett.B 83 (1979) 339 [INSPIRE].
[6] D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett.70 (1993) 1372 [INSPIRE].
[7] M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys.B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
[8] A. Djouadi, M. Spira and P. Zerwas, QCD corrections to hadronic Higgs decays, Z. Phys.C 70 (1996) 427 [hep-ph/9511344] [INSPIRE].
[9] M. Spira, QCD effects in Higgs physics, Fortsch. Phys.46 (1998) 203 [hep-ph/9705337] [INSPIRE]. · Zbl 0988.81129
[10] F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett.39 (1977) 1304 [INSPIRE].
[11] M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett.B 78 (1978) 443 [INSPIRE].
[12] T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys.C 18 (1983) 69 [INSPIRE].
[13] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys.B 359 (1991) 283 [INSPIRE].
[14] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett.88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
[15] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
[16] V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys.B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
[17] C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys.B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].
[18] C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the H → WW → lνlν signal at the LHC, JHEP09 (2007) 018 [arXiv:0707.2373] [INSPIRE].
[19] M. Grazzini, NNLO predictions for the Higgs boson signal in the H → WW → lνlν and H → ZZ → 4 l decay channels, JHEP02 (2008) 043 [arXiv:0801.3232] [INSPIRE].
[20] S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP01 (2002) 015 [hep-ph/0111164] [INSPIRE].
[21] C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL + NNLO, JHEP04 (2011) 092 [arXiv:1012.4480] [INSPIRE].
[22] D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett.82 (1999) 5209 [hep-ph/9902483] [INSPIRE].
[23] V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys.B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].
[24] J.M. Campbell, R. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP10 (2006) 028 [hep-ph/0608194] [INSPIRE].
[25] J.M. Campbell, R. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev.D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].
[26] I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, arXiv:1107.2117 [INSPIRE].
[27] E. Gerwick, T. Plehn and S. Schumann, Understanding jet scaling and jet vetos in Higgs searches, Phys. Rev. Lett.108 (2012) 032003 [arXiv:1108.3335] [INSPIRE].
[28] L.J. Dixon, E. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP12 (2004) 015 [hep-th/0411092] [INSPIRE].
[29] S.S. Badger, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-parton amplitudes, JHEP03 (2005) 023 [hep-th/0412275] [INSPIRE].
[30] S.D. Badger and E.W.N. Glover, One-loop helicity amplitudes for H → gluons: the all-minus configuration, Nucl. Phys. Proc. Suppl.160 (2006) 71 [hep-ph/0607139] [INSPIRE].
[31] L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP08 (2009) 058 [arXiv:0906.0008] [INSPIRE].
[32] S.D. Badger, E.W.N. Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP01 (2010) 036 [arXiv:0909.4475] [INSPIRE]. · Zbl 1269.81183
[33] S.D. Badger, J.M. Campbell, R. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP12 (2009) 035 [arXiv:0910.4481] [INSPIRE].
[34] C.R. Schmidt, H → ggg \(( gq\overline q\) at two loops in the large Mtlimit, Phys. Lett.B 413 (1997) 391 [hep-ph/9707448] [INSPIRE].
[35] A. Koukoutsakis, Higgs bosons and QCD jets at two loops, Ph.D. Thesis, University of Durham, Durham U.K. (2003).
[36] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys.B 585 (2000) 741 [hep-ph/0004013] [INSPIRE]. · Zbl 1042.81565
[37] T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys.B 693 (2004) 134 [hep-ph/0402265] [INSPIRE]. · Zbl 1151.81352
[38] C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev.D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].
[39] G. Heinrich, Sector decomposition, Int. J. Mod. Phys.A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE]. · Zbl 1153.81522
[40] J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun.182 (2011) 1566 [arXiv:1011.5493] [INSPIRE]. · Zbl 1262.81119
[41] C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP03 (2011) 038 [arXiv:1011.4867] [INSPIRE]. · Zbl 1301.81284
[42] C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, arXiv:1110.2368 [INSPIRE]. · Zbl 1309.81257
[43] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
[44] A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].
[45] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e+e− → 3 jets at NNLO, JHEP11 (2007) 058 [arXiv:0710.0346] [INSPIRE].
[46] A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].
[47] A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP01 (2010) 118 [arXiv:0912.0374] [INSPIRE]. · Zbl 1269.81194
[48] R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP02 (2011) 098 [arXiv:1011.6631] [INSPIRE]. · Zbl 1294.81270
[49] T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP12 (2011) 049 [arXiv:1107.4037] [INSPIRE]. · Zbl 1306.81339
[50] E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP06 (2010) 096 [arXiv:1003.2824] [INSPIRE]. · Zbl 1288.81147
[51] C. Anastasiou, E. Glover, C. Oleari and M. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys.B 601 (2001) 318[hep-ph/0010212] [INSPIRE].
[52] C. Anastasiou, E. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys.B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].
[53] C. Anastasiou, E. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys.B 605 (2001) 486[hep-ph/0101304] [INSPIRE].
[54] E.W.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys.B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].
[55] C. Anastasiou, E. Glover and M. Tejeda-Yeomans, Two loop QED and QCD corrections to massless fermion boson scattering, Nucl. Phys.B 629 (2002) 255 [hep-ph/0201274] [INSPIRE].
[56] E.W.N. Glover and M. Tejeda-Yeomans, Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering, JHEP06 (2003) 033 [hep-ph/0304169] [INSPIRE].
[57] E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP04 (2004) 021 [hep-ph/0401119] [INSPIRE].
[58] Z. Bern, A. De Freitas and L.J. Dixon, Two loop amplitudes for gluon fusion into two photons, JHEP09 (2001) 037 [hep-ph/0109078] [INSPIRE].
[59] Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].
[60] Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP06 (2003) 028 [hep-ph/0304168] [INSPIRE].
[61] A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP09 (2004) 039 [hep-ph/0409007] [INSPIRE].
[62] V. Del Duca and E. Glover, The high-energy limit of QCD at two loops, JHEP10 (2001) 035 [hep-ph/0109028] [INSPIRE].
[63] A. Bogdan, V. Del Duca, V.S. Fadin and E. Glover, The quark Regge trajectory at two loops, JHEP03 (2002) 032 [hep-ph/0201240] [INSPIRE].
[64] L. Garland, T. Gehrmann, E. Glover, A. Koukoutsakis and E. Remiddi, The two loop QCD matrix element for e+e− → 3 jets, Nucl. Phys.B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].
[65] L. Garland, T. Gehrmann, E. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for e+e− → three jets, Nucl. Phys.B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].
[66] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].
[67] S. Badger and E. Glover, Two loop splitting functions in QCD, JHEP07 (2004) 040 [hep-ph/0405236] [INSPIRE].
[68] R. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Higgs decay to τ+τ−a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys.B 297 (1988) 221 [INSPIRE].
[69] U. Baur and E. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys.B 339 (1990) 38 [INSPIRE].
[70] K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \(\alpha_s^3 \), Phys. Rev. Lett.79 (1997) 353 [hep-ph/9705240] [INSPIRE].
[71] B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys.C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
[72] K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O( \alpha_s^3 )\) and their connection to low-energy theorems, Nucl. Phys.B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
[73] Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless nonabelian gauge theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].
[74] F.A. Berends, R. Kleiss and S. Jadach, Radiative corrections to muon pair and quark pair production in electron-positron collisions in the Z0region, Nucl. Phys.B 202 (1982) 63[INSPIRE].
[75] CALKUL collaboration, F.A. Berends et al., Multiple Bremsstrahlung in gauge theories at high-energies. 3. Finite mass effects in collinear photon Bremsstrahlung, Nucl. Phys.B 239 (1984) 382 [INSPIRE].
[76] L.J. Dixon, Calculating scattering amplitudes efficiently, in the proceedings of TASI ’94 - QCD & beyond, D. Soper ed., World Scientific, Singapore (1995) 539 [hep-ph/9601359] [INSPIRE].
[77] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett.99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].
[78] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e+e−annihilation, JHEP12 (2007) 094 [arXiv:0711.4711] [INSPIRE].
[79] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Jet rates in electron-positron annihilation at \(O( \alpha_s^3 )\) in QCD, Phys. Rev. Lett.100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].
[80] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO moments of event shapes in e+e−annihilation, JHEP05 (2009) 106 [arXiv:0903.4658] [INSPIRE].
[81] S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett.101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].
[82] S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP06 (2009) 041 [arXiv:0904.1077] [INSPIRE].
[83] S. Weinzierl, The infrared structure of e+e− → 3 jets at NNLO reloaded, JHEP07 (2009) 009 [arXiv:0904.1145] [INSPIRE].
[84] S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev.D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].
[85] S. Weinzierl, Jet algorithms in electron-positron annihilation: perturbative higher order predictions, Eur. Phys. J.C 71 (2011) 1565 [Erratum ibid.C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].
[86] T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \(q\overline q → W\)±γ and \(q\overline q \)→Z0γ, JHEP02 (2012) 004 [arXiv:1112.1531] [INSPIRE].
[87] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE]. · Zbl 0782.68091
[88] C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim.12 (1972) 20.
[89] G. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim.4 (1972) 329 [INSPIRE].
[90] G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[91] J. Vermaseren, New features of form, math-ph/0010025 [INSPIRE].
[92] J. Vermaseren, The form project, Nucl. Phys. Proc. Suppl.183 (2008) 19 [arXiv:0806.4080] [INSPIRE].
[93] F. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett.B 100 (1981) 65 [INSPIRE].
[94] K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].
[95] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[96] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[97] C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun.181 (2010) 1293 [arXiv:0912.2546] [INSPIRE]. · Zbl 1219.81133
[98] T. Gehrmann and E. Remiddi, Two loop master integrals for gamma* → 3 jets: the planar topologies, Nucl. Phys.B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
[99] T. Gehrmann and E. Remiddi, Two loop master integrals for gamma* → 3 jets: the nonplanar topologies, Nucl. Phys.B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].
[100] E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[101] N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldiana (Halle)90 (1909) 123. · JFM 40.0478.01
[102] K.S. Kölbig, J.A. Mignaco and E. Remiddi, On Nielsen’s generalized polylogarithms and their numerical calculation, BIT10 (1970) 38. · Zbl 0196.17302
[103] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE]. · Zbl 0991.65022
[104] T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun.144 (2002) 200 [hep-ph/0111255] [INSPIRE]. · Zbl 1001.65020
[105] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun.167 (2005) 177 [hep-ph/0410259] [INSPIRE]. · Zbl 1196.65045
[106] D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE]. · Zbl 1196.68330
[107] S. Buehler and C. Duhr, CHAPLIN - Complex harmonic polylogarithms in Fortran, arXiv:1106.5739 [INSPIRE]. · Zbl 1360.33002
[108] T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys.B 640 (2002) 379 [hep-ph/0207020] [INSPIRE]. · Zbl 0997.81070
[109] R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to proton proton → H + X at NNLO, Phys. Rev.D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].
[110] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett.B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[111] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE]. · Zbl 1005.81519
[112] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].
[113] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP03 (2009) 079 [arXiv:0901.1091] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.