×

Supertranslations and holographic stress tensor. (English) Zbl 1309.83024

Summary: It is well known in the context of four dimensional asymptotically flat space-times that the leading order boundary metric must be conformal to unit de Sitter metric when hyperbolic cutoffs are used. This situation is very different from asymptotically AdS settings where one is allowed to choose an arbitrary boundary metric. The closest one can come to changing the boundary metric in the asymptotically flat context, while maintaining the group of asymptotic symmetries to be Poincaré, is to change the so-called ’supertranslation frame’ \(\omega\). The most studied choice corresponds to taking \(\omega =\;0\). In this paper we study consequences of making alternative choices. We perform this analysis in the covariant phase space approach as well as in the holographic renormalization approach. We show that all choices for \(\omega\) are allowed in the sense that the covariant phase space is well defined irrespective of how we choose to fix supertranslations. The on-shell action and the leading order boundary stress tensor are insensitive to the supertranslation frame. The next to leading order boundary stress tensor depends on the supertranslation frame but only in a way that the transformation of angular momentum under translations continues to hold as in special relativity.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
81T45 Topological field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81V17 Gravitational interaction in quantum theory
83F05 Relativistic cosmology

Software:

xPert; Invar; xPerm; xTensor; xAct
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1133] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[3] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126
[4] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083
[5] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev.D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].
[6] V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE]. · Zbl 0946.83013
[7] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys.B 631 (2002) 159 [hep-th/0112119] [INSPIRE]. · Zbl 0995.81075
[8] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE]. · Zbl 1044.83009
[9] R. Beig and B. Schmidt, Einstein’s equations near spatial infinity, Commun. Math. Phys.87 (1982) 65. · Zbl 0504.53025
[10] Ashtekar, A.; Bombelli, L.; Reula, O.; Francaviglia, M. (ed.); Holm, D. (ed.), The covariant phase space of asymptotically flat gravitational fields (1991), Amsterdam The Netherlands
[11] J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725 [INSPIRE]. · Zbl 0704.70013
[12] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].
[13] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[14] R.M. Wald and A. Zoupas, A general definition of ’conserved quantities’ in general relativity and other theories of gravity, Phys. Rev.D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE]. · Zbl 1136.83317
[15] R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav.23 (2006) 2927 [hep-th/0511096] [INSPIRE]. · Zbl 1096.83033
[16] R.B. Mann, D. Marolf and A. Virmani, Covariant counterterms and conserved charges in asymptotically flat spacetimes, Class. Quant. Grav.23 (2006) 6357 [gr-qc/0607041] [INSPIRE]. · Zbl 1117.83031
[17] R.B. Mann, D. Marolf, R. McNees and A. Virmani, On the stress tensor for asymptotically flat gravity, Class. Quant. Grav.25 (2008) 225019 [arXiv:0804.2079] [INSPIRE]. · Zbl 1152.83355
[18] A. Ashtekar and R. Hansen, A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity, J. Math. Phys.19 (1978) 1542 [INSPIRE].
[19] A. Ashtekar and J.D. Romano, Spatial infinity as a boundary of space-time, Class. Quant. Grav.9 (1992) 1069 [INSPIRE]. · Zbl 0749.53042
[20] A. Ashtekar and A. Magnon, From i0to the 3 + 1 description of spatial infinity, J. Math. Phys.25 (1984) 2682. · Zbl 0559.53044
[21] R. Beig, Integration of Einsteins equations near spatial infinity, Proc. Roy. Soc. Lond.A 391 (1984) 295. · Zbl 0533.53034
[22] G. Compere, F. Dehouck and A. Virmani, On asymptotic flatness and Lorentz charges, Class. Quant. Grav.28 (2011) 145007 [arXiv:1103.4078] [INSPIRE]. · Zbl 1222.83058
[23] J. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev.D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
[24] S. Deser, R. Arnowitt and C. Misner, Heisenberg representation in classical general relativity, Nuovo Cim.19 (1961) 668 [INSPIRE]. · Zbl 0095.42104
[25] S. Deser, R. Arnowitt and C. Misner, Consistency of canonical reduction of general relativity, J. Math. Phys.1 (1960) 434 [INSPIRE]. · Zbl 0098.19103
[26] R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, gr-qc/0405109 [INSPIRE]. · Zbl 1152.83320
[27] T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys.88 (1974) 286 [INSPIRE]. · Zbl 0328.70016
[28] R. Geroch, Asymptotic structure of space-time, in Proceedings of a Symposium on the asymptotic structure of space-time, University of Cincinnati, Cincinnati U.S.A. (1976), P. Esposito and L. Witten eds., Plenum Press, New York U.S.A. (1977).
[29] Ashtekar, A.; Held, A. (ed.), Asymptotic structure of the gravitational field at spatial infinity (1980), New York USA
[30] L. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys.B 195 (1982) 76 [INSPIRE]. · Zbl 0900.53033
[31] S. Deser and B. Tekin, Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett.89 (2002) 101101 [hep-th/0205318] [INSPIRE]. · Zbl 1267.83086
[32] S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev.D 67 (2003) 084009 [hep-th/0212292] [INSPIRE].
[33] S. Deser and B. Tekin, New energy definition for higher curvature gravities, Phys. Rev.D 75 (2007) 084032 [gr-qc/0701140] [INSPIRE].
[34] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys.B 633 (2002) 3 [hep-th/0111246] [INSPIRE]. · Zbl 0995.81054
[35] G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys.49 (2008) 042901 [arXiv:0708.2378] [INSPIRE]. · Zbl 1152.81327
[36] Sorkin, RD; Isenberg, JW (ed.), Conserved Quantities as Action Variations, 23-37 (1988), Providence USA
[37] A. Virmani, Asymptotic flatness, Taub-NUT and variational principle, Phys. Rev.D 84 (2011) 064034 [arXiv:1106.4372] [INSPIRE].
[38] D. Marolf, Asymptotic flatness, little string theory and holography, JHEP03 (2007) 122 [hep-th/0612012] [INSPIRE].
[39] D. Marolf and A. Virmani, Holographic renormalization of gravity in little string theory duals, JHEP06 (2007) 042 [hep-th/0703251] [INSPIRE].
[40] G. Compere and F. Dehouck, Relaxing the parity conditions of asymptotically flat gravity, Class. Quant. Grav.28 (2011) 245016 [arXiv:1106.4045] [INSPIRE]. · Zbl 1232.83011
[41] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP05 (2010) 062 [arXiv:1001.1541] [INSPIRE]. · Zbl 1287.83043
[42] G. Barnich and P.-H. Lambert, A note on the Newman-Unti group, arXiv:1102.0589 [INSPIRE]. · Zbl 1266.83132
[43] G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].
[44] G. Barnich and C. Troessaert, BMS charge algebra, JHEP12 (2011) 105 [arXiv:1106.0213] [INSPIRE]. · Zbl 1306.83002
[45] A. Ashtekar, J. Engle and D. Sloan, Asymptotics and Hamiltonians in a first order formalism, Class. Quant. Grav.25 (2008) 095020 [arXiv:0802.2527] [INSPIRE]. · Zbl 1141.83005
[46] J. Le Witt and S.F. Ross, Asymptotically plane wave spacetimes and their actions, JHEP04 (2008) 084 [arXiv:0801.4412] [INSPIRE]. · Zbl 1246.83185
[47] J. Le Witt and S.F. Ross, Black holes and black strings in plane waves, JHEP01 (2010) 101 [arXiv:0910.4332] [INSPIRE]. · Zbl 1269.83047
[48] S. Hollands, A. Ishibashi and D. Marolf, Counter-term charges generate bulk symmetries, Phys. Rev.D 72 (2005) 104025 [hep-th/0503105] [INSPIRE].
[49] R.B. Mann and R. McNees, Boundary terms unbound! Holographic renormalization of asymptotically linear dilaton gravity, Class. Quant. Grav.27 (2010) 065015 [arXiv:0905.3848] [INSPIRE]. · Zbl 1187.83010
[50] T. Wiseman and B. Withers, Holographic renormalization for coincident Dp-branes, JHEP10 (2008) 037 [arXiv:0807.0755] [INSPIRE]. · Zbl 1245.81230
[51] S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav.28 (2011) 215019 [arXiv:1107.4451] [INSPIRE]. · Zbl 1230.83018
[52] M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi renormalization for Lifshitz spacetime, JHEP01 (2012) 058 [arXiv:1107.5562] [INSPIRE]. · Zbl 1306.81072
[53] R.B. Mann and R. McNees, Holographic renormalization for asymptotically Lifshitz spacetimes, JHEP10 (2011) 129 [arXiv:1107.5792] [INSPIRE]. · Zbl 1303.81120
[54] J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys.B 665 (2003) 545 [hep-th/0303006] [INSPIRE]. · Zbl 1038.83030
[55] G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically flat space-times via the BMS group, Nucl. Phys.B 674 (2003) 553 [hep-th/0306142] [INSPIRE]. · Zbl 1066.83513
[56] E. Alvarez, J. Conde and L. Hernandez, Goursat’s problem and the holographic principle, Nucl. Phys.B 689 (2004) 257 [hep-th/0401220] [INSPIRE]. · Zbl 1325.81127
[57] J.L. Barbon and C.A. Fuertes, Holographic entanglement entropy probes (non)locality, JHEP04 (2008) 096 [arXiv:0803.1928] [INSPIRE]. · Zbl 1246.81204
[58] W. Li and T. Takayanagi, Holography and entanglement in flat spacetime, Phys. Rev. Lett.106 (2011) 141301 [arXiv:1010.3700] [INSPIRE].
[59] G. Compere, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP07 (2011) 050 [arXiv:1103.3022] [INSPIRE]. · Zbl 1298.83013
[60] J.M. Martín-García, xAct: Efficient tensor computer algebra, http://www.xact.es/.
[61] J.M. Martín-García, R. Portugal and L. Manssur, The Invar tensor package, Computer Physics Communications177 (2007) 640 [arXiv:0704.1756]. · Zbl 1196.15006
[62] J.M. Martín-García, D. Yllanes and R. Portugal, The Invar tensor package: differential invariants of Riemann, Comput. Phys. Commun.179 (2008) 586 [arXiv:0802.1274] [INSPIRE]. · Zbl 1197.15001
[63] J.M. Martín-García, xPerm: fast index canonicalization for tensor computer algebra, Computer Physics Communications179 (2008) 597 [arXiv:0803.0862]. · Zbl 1197.15002
[64] D. Brizuela, J.M. Martín-García and G.A. Mena Marugan, xPert: computer algebra for metric perturbation theory, Gen. Rel. Grav.41 (2009) 2415 [arXiv:0807.0824] [INSPIRE]. · Zbl 1176.83004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.