×

Pathway-level disease data mining through hyper-box principles. (English) Zbl 1315.92056

Summary: In microarray data analysis, traditional methods that focus on single genes are increasingly replaced by methods that analyse functional units corresponding to biochemical pathways, as these are considered to offer more insight into gene expression and disease associations. However, the development of robust pipelines to relate genotypic functional modules to disease phenotypes through known molecular interactions is still at its early stages. In this article we first discuss methodologies that employ groups of genes in disease classification tasks that aim to link gene expression patterns with disease outcome. Then we present a pathway-based approach for disease classification through a mathematical programming model based on hyper-box principles. Association rules derived from the model are extracted and discussed with respect to pathway-specific molecular patterns related to the disease. Overall, we argue that the use of gene sets corresponding to disease-relevant pathways is a promising route to uncover expression-to-phenotype relations in disease classification and we illustrate the potential of hyper-box classification in assessing the predictive power of functional pathways and uncover the effect of specific genes in the prediction of disease phenotypes.

MSC:

92D10 Genetics and epigenetics

Software:

KEGG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lapointe, J.; Li, C.; Higgins, J. P.; van de Rijn, M.; Bair, E.; Montgomery, K.; Ferrari, M.; Egevad, L.; Rayford, W.; Bergerheim, U., Gene expression profiling identifies clinically relevant subtypes of prostate cancer, Proc. Natl. Acad. Sci. U.S.A., 101, 3, 811-816 (2004)
[2] Sotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B., Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis, J. Natl. Cancer Inst., 98, 4, 262-272 (2006)
[3] van de Vijver, M. J.; He, Y. D.; van ’t Veer, L. J.; Dai, H.; Hart, A. A.M.; Voskuil, D. W.; Schreiber, G. J.; Peterse, J. L.; Roberts, C.; Marton, M. J., A gene-expression signature as a predictor of survival in breast cancer, N. Engl. J. Med., 347, 25, 1999-2009 (2002)
[4] Wang, Y.; Klijn, J. G.M.; Zhang, Y.; Sieuwerts, A. M.; Look, M. P.; Yang, F.; Talantov, D.; Timmermans, M.; Meijer-van Gelder, M. E.; Yu, J., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer, Lancet, 365, 9460, 671-679 (2005)
[5] Pawitan, Y.; Bjohle, J.; Amler, L.; Borg, A.-L.; Egyhazi, S.; Hall, P.; Han, X.; Holmberg, L.; Huang, F.; Klaar, S., Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts, Breast Cancer Res., 7, 6, R953-R964 (2005)
[6] Alizadeh, A. A.; Eisen, M. B.; Davis, R. E.; Ma, C.; Lossos, I. S.; Rosenwald, A.; Boldrick, J. C.; Sabet, H.; Tran, T.; Yu, X., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403, 6769, 503-511 (2000)
[7] Colombo, P. E.; Milanezi, F.; Weigelt, B.; Reis, J. S., Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction, Breast Cancer Res., 13, 3 (2011)
[8] Luo, J.; Duggan, D. J.; Chen, Y.; Sauvageot, J.; Ewing, C. M.; Bittner, M. L.; Trent, J. M.; Isaacs, W. B., Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling, Cancer Res., 61, 12, 4683-4688 (2001)
[9] Duggan, D. J.; Bittner, M.; Chen, Y.; Meltzer, P.; Trent, J. M., Expression profiling using cDNA microarrays, Nat. Genet., 21, 1 Suppl, 10-14 (1999)
[10] Nguyen, D. V.; Rocke, D. M., Tumor classification by partial least squares using microarray gene expression data, Bioinformatics, 18, 1, 39-50 (2002)
[11] Duval, B.; Hao, J.-K., Advances in metaheuristics for gene selection and classification of microarray data, Brief. Bioinform., 11, 1, 127-141 (2010)
[12] Reboiro-Jato, M.; Laza, R.; Lopez-Fernandez, H.; Glez-Pena, D.; Diaz, F.; Fdez-Riverola, F., Genensemble: a new model for the combination of classifiers and integration of biological knowledge applied to genomic data, Expert Syst. Appl., 40, 1, 52-63 (2013)
[13] Statnikov, A.; Wang, L.; Aliferis, C. F., A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification, BMC Bioinformatics, 9, 319 (2008)
[14] Zhang, C. L.; Lu, X. S.; Zhang, X. G., Significance of gene ranking for classification of microarray samples, IEEE/ACM Trans. Comput. Biol. BioInf., 3, 3, 312-320 (2006)
[15] Wang, H.-Q.; Xie, X.-P.; Zheng, C.-H., A pathway-based classification method that can improve microarray-based colorectal cancer diagnosis, (Huang, D.-S.; Gan, Y.; Premaratne, P.; Han, K., Bio-Inspired Computing and Applications, vol. 6840 (2012), Springer Berlin Heidelberg), 610-617
[16] Kim, S.; Kon, M.; DeLisi, C., Pathway-based classification of cancer subtypes, Biol. Direct, 7, 21 (2012)
[17] He, Z. Y.; Yu, W. C., Stable feature selection for biomarker discovery, Comput. Biol. Chem., 34, 4, 215-225 (2010) · Zbl 1403.92068
[18] Chuang, H. Y.; Lee, E.; Liu, Y. T.; Lee, D.; Ideker, T., Network-based classification of breast cancer metastasis, Mol. Syst. Biol., 3, 140 (2007)
[19] Lee, E.; Chuang, H. Y.; Kim, J. W.; Ideker, T.; Lee, D., Inferring pathway activity toward precise disease classification, PLoS Comput. Biol., 4, 11, e1000217 (2008)
[20] Su, J.; Yoon, B. J.; Dougherty, E. R., Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network, BMC Bioinformatics, 11, Suppl 6, S8 (2010)
[21] Liu, K. Q.; Liu, Z. P.; Hao, J. K.; Chen, L. N.; Zhao, X. M., Identifying dysregulated pathways in cancers from pathway interaction networks, BMC Bioinformatics, 13, 126 (2012)
[23] Jiao, Y.; Lawler, K.; Patel, G. S.; Purushotham, A.; Jones, A. F.; Grigoriadis, A.; Tutt, A.; Ng, T.; Teschendorff, A. E., DART: Denoising algorithm based on relevance network topology improves molecular pathway activity inference, BMC Bioinformatics, 12, 403 (2011)
[24] van ’t Veer, L. J.; Dai, H.; van de Vijver, M. J.; He, Y. D.; Hart, A. A.M.; Mao, M.; Peterse, H. L.; van der Kooy, K.; Marton, M. J.; Witteveen, A. T., Gene expression profiling predicts clinical outcome of breast cancer, Nature, 415, 6871, 530-536 (2002)
[25] Liu, Q.; Sung, A.; Chen, Z.; Liu, J.; Chen, L.; Qiao, M.; Wang, Z.; Huang, X.; Deng, Y., Gene selection and classification for cancer microarray data based on machine learning and similarity measures, BMC Genomics, 12, Suppl. 5, S1 (2011)
[26] Lan, L.; Vucetic, S., Multi-task feature selection in microarray data by binary integer programming, BMC Proceedings, 7, Suppl. 7, S5 (2013)
[27] Dagliyan, O.; Uney-Yuksektepe, F.; Kavakli, I. H.; Turkay, M., Optimization based tumor classification from microarray gene expression data, PLoS One, 6, 2, e14579 (2011)
[28] Singh, D.; Febbo, P. G.; Ross, K.; Jackson, D. G.; Manola, J.; Ladd, C.; Tamayo, P.; Renshaw, A. A.; D’Amico, A. V.; Richie, J. P., Gene expression correlates of clinical prostate cancer behavior, Cancer Cell, 1, 2, 203-209 (2002)
[29] Shipp, M. A.; Ross, K. N.; Tamayo, P.; Weng, A. P.; Kutok, J. L.; Aguiar, R. C.T.; Gaasenbeek, M.; Angelo, M.; Reich, M.; Pinkus, G. S., Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning, Nat. Med., 8, 1, 68-74 (2002)
[30] Wong, T. T.; Hsu, C. H., Two-stage classification methods for microarray data, Expert Syst. Appl., 34, 1, 375-383 (2008)
[31] Chen, P.-C.; Huang, S.-Y.; Chen, W.; Hsiao, C., A new regularized least squares support vector regression for gene selection, BMC Bioinformatics, 10, 1, 44 (2009)
[32] Khan, J.; Wei, J. S.; Ringner, M.; Saal, L. H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C. R.; Peterson, C., Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nat. Med., 7, 6, 673-679 (2001)
[33] Wang, S. L.; Li, X. L.; Zhang, S. W.; Gui, J.; Huang, D. S., Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction, Comput. Biol. Med., 40, 2, 179-189 (2010)
[34] Abeel, T.; Helleputte, T.; Van de Peer, Y.; Dupont, P.; Saeys, Y., Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, Bioinformatics, 26, 3, 392-398 (2010)
[35] Liu, H. W.; Liu, L.; Zhang, H. J., Ensemble gene selection by grouping for microarray data classification, J. Biomed. Inform., 43, 1, 81-87 (2010)
[36] Kim, K. J.; Cho, S. B., Ensemble classifiers based on correlation analysis for DNA microarray classification, Neurocomputing, 70, 1-3, 187-199 (2006)
[37] Liu, H. W.; Liu, L.; Zhang, H. J., Ensemble gene selection for cancer classification, Pattern Recogn., 43, 8, 2763-2772 (2010)
[38] Nanni, L.; Brahnam, S.; Lumini, A., Combining multiple approaches for gene microarray classification, Bioinformatics, 28, 8, 1151-1157 (2012)
[39] Piao, Y.; Piao, M.; Park, K.; Ryu, K. H., An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data, Bioinformatics, 28, 24, 3306-3315 (2012)
[40] Barabasi, A. L.; Gulbahce, N.; Loscalzo, J., Network medicine: a network-based approach to human disease, Nat. Rev. Genet., 12, 1, 56-68 (2011)
[41] Bild, A. H.; Yao, G.; Chang, J. T.; Wang, Q. L.; Potti, A.; Chasse, D.; Joshi, M. B.; Harpole, D.; Lancaster, J. M.; Berchuck, A., Oncogenic pathway signatures in human cancers as a guide to targeted therapies, Nature, 439, 7074, 353-357 (2006)
[42] Lage, K.; Karlberg, E. O.; Storling, Z. M.; Olason, P. I.; Pedersen, A. G.; Rigina, O.; Hinsby, A. M.; Tumer, Z.; Pociot, F.; Tommerup, N., A human phenome-interactome network of protein complexes implicated in genetic disorders, Nat. Biotechnol., 25, 3, 309-316 (2007)
[43] Navlakha, S.; Kingsford, C., The power of protein interaction networks for associating genes with diseases, Bioinformatics, 26, 8, 1057-1063 (2010)
[44] Li, J.; Lenferink, A. E.G.; Deng, Y. H.; Collins, C.; Cui, Q. H.; Purisima, E. O.; O’Connor-McCourt, M. D.; Wang, E., Identification of high-quality cancer prognostic markers and metastasis network modules, Nat. Commun., 1, 34 (2010)
[45] Kim, Y. A.; Wuchty, S.; Przytycka, T. M., Identifying causal genes and dysregulated pathways in complex diseases, PLoS Comput. Biol., 7, 3, e1001095 (2011)
[46] Chuang, H. Y.; Rassenti, L.; Salcedo, M.; Licon, K.; Kohlmann, A.; Haferlach, T.; Foa, R.; Ideker, T.; Kipps, T. J., Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression, Blood, 120, 13, 2639-2649 (2012)
[47] Taylor, I. W.; Linding, R.; Warde-Farley, D.; Liu, Y.; Pesquita, C.; Faria, D.; Bull, S.; Pawson, T.; Morris, Q.; Wrana, J. L., Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nat. Biotechnol., 27, 2, 199-204 (2009)
[48] Rapaport, F.; Zinovyev, A.; Dutreix, M.; Barillot, E.; Vert, J. P., Classification of microarray data using gene networks, BMC Bioinformatics, 8, 35 (2007)
[49] Ulitsky, I.; Karp, R. M.; Shamir, R., Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles, Lect. Notes Bioinformatics, 4955, 347-359 (2008)
[50] Cary, M. P.; Bader, G. D.; Sander, C., Pathway information for systems biology, FEBS Lett., 579, 8, 1815-1820 (2005)
[51] Suthram, S.; Shlomi, T.; Ruppin, E.; Sharan, R.; Ideker, T., A direct comparison of protein interaction confidence assignment schemes, BMC Bioinformatics, 7, 1, 360 (2006)
[52] Croft, D.; O’Kelly, G.; Wu, G. M.; Haw, R.; Gillespie, M.; Matthews, L.; Caudy, M.; Garapati, P.; Gopinath, G.; Jassal, B., Reactome: a database of reactions, pathways and biological processes, Nucleic Acids Res., 39, D691-D697 (2011)
[53] Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M., The KEGG resource for deciphering the genome, Nucleic Acids Res., 32, D277-D280 (2004)
[54] Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T., Gene ontology: tool for the unification of biology, Nat. Genet., 25, 1, 25-29 (2000)
[55] Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A., 102, 43, 15545-15550 (2005)
[56] Jiang, Z.; Gentleman, R., Extensions to gene set enrichment, Bioinformatics, 23, 3, 306-313 (2007)
[57] Dinu, I.; Potter, J.; Mueller, T.; Liu, Q.; Adewale, A.; Jhangri, G.; Einecke, G.; Famulski, K.; Halloran, P.; Yasui, Y., Improving gene set analysis of microarray data by SAM-GS, BMC Bioinformatics, 8, 1, 242 (2007)
[58] Schadt, E. E., Molecular networks as sensors and drivers of common human diseases, Nature, 461, 7261, 218-223 (2009)
[59] Tian, L.; Greenberg, S.; Kong, S.; Altschuler, J.; Kohane, I.; Park, P., Discovering statistically significant pathways in expression profiling studies, Proc. Natl. Acad. Sci. U.S.A., 102, 13544-13549 (2005)
[60] Ein-Dor, L.; Kela, I.; Getz, G.; Givol, D.; Domany, E., Outcome signature genes in breast cancer: is there a unique set?, Bioinformatics, 21, 2, 171-178 (2005)
[61] Xu, G.; Papageorgiou, L. G., A mixed integer optimisation model for data classification, Comput. Ind. Eng., 56, 4, 1205-1215 (2009)
[62] Cheang, M. C.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S. K.; Perou, C. M.; Nielsen, T. O., Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype, Clin. Cancer Res., 14, 5, 1368-1376 (2008)
[63] Ha, G.; Roth, A.; Lai, D.; Bashashati, A.; Ding, J.; Goya, R.; Giuliany, R.; Rosner, J.; Oloumi, A.; Shumansky, K., Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer, Genome Res., 22, 10, 1995-2007 (2012)
[64] Stephens, P. J.; Tarpey, P. S.; Davies, H.; Van Loo, P.; Greenman, C.; Wedge, D. C.; Nik-Zainal, S.; Martin, S.; Varela, I.; Bignell, G. R., The landscape of cancer genes and mutational processes in breast cancer, Nature, 486, 7403, 400-404 (2012)
[65] Curtis, C.; Shah, S. P.; Chin, S. F.; Turashvili, G.; Rueda, O. M.; Dunning, M. J.; Speed, D.; Lynch, A. G.; Samarajiwa, S.; Yuan, Y., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups, Nature, 486, 7403, 346-352 (2012)
[66] Nestle, F. O.; Kaplan, D. H.; Barker, J., Psoriasis, N. Engl. J. Med., 361, 5, 496-509 (2009)
[67] Lowes, M. A.; Lew, W.; Krueger, J. G., Current concepts in the immunopathogenesis of psoriasis, Dermatol. Clin., 22, 4, 349-369 (2004), vii
[68] Farmer, P.; Bonnefoi, H.; Becette, V.; Tubiana-Hulin, M.; Fumoleau, P.; Larsimont, D.; MacGrogan, G.; Bergh, J.; Cameron, D.; Goldstein, D., Identification of molecular apocrine breast tumours by microarray analysis, Oncogene, 24, 29, 4660-4671 (2005)
[69] Yao, Y.; Richman, L.; Morehouse, C.; de los Reyes, M.; Higgs, B. W.; Boutrin, A.; White, B.; Coyle, A.; Krueger, J.; Kiener, P. A., Type I interferon: potential therapeutic target for psoriasis?, PLoS One, 3, 7, e2737 (2008)
[70] Stuart, P. E.; Nair, R. P.; Ellinghaus, E.; Ding, J.; Tejasvi, T.; Gudjonsson, J. E.; Li, Y.; Weidinger, S.; Eberlein, B.; Gieger, C., Genome-wide association analysis identifies three psoriasis susceptibility loci, Nat. Genet., 42, 11, 1000-1004 (2010)
[71] Swindell, W. R.; Johnston, A.; Carbajal, S.; Han, G.; Wohn, C.; Lu, J.; Xing, X.; Nair, R. P.; Voorhees, J. J.; Elder, J. T., Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis, PLoS One, 6, 4, e18266 (2011)
[72] Kanehisa, M., The KEGG database, Novartis Found Symp., 247, 91-101 (2002), discussion 101-103, 119-128, 244-152
[73] Kanehisa, M., Molecular network analysis of diseases and drugs in KEGG, Methods Mol. Biol., 939, 263-275 (2013)
[74] Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M., KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Res., 38, Database issue, D355-360 (2010)
[75] Frank, E.; Hall, M.; Trigg, L.; Holmes, G.; Witten, I. H., Data mining in bioinformatics using Weka, Bioinformatics, 20, 15, 2479-2481 (2004)
[76] Suarez-Farinas, M.; Lowes, M. A.; Zaba, L. C.; Krueger, J. G., Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA), PLoS One, 5, 4, e10247 (2010)
[77] Lee, Y. H.; Choi, S. J.; Ji, J. D.; Song, G. G., Genome-wide pathway analysis of a genome-wide association study on psoriasis and Behcet’s disease, Mol. Biol. Rep., 39, 5, 5953-5959 (2012)
[78] Gatza, M. L.; Lucas, J. E.; Barry, W. T.; Kim, J. W.; Wang, Q.; Crawford, M. D.; Datto, M. B.; Kelley, M.; Mathey-Prevot, B.; Potti, A., A pathway-based classification of human breast cancer, Proc. Natl. Acad. Sci. U.S.A., 107, 15, 6994-6999 (2010)
[79] Schramm, G.; Surmann, E. M.; Wiesberg, S.; Oswald, M.; Reinelt, G.; Eils, R.; Konig, R., Analyzing the regulation of metabolic pathways in human breast cancer, BMC Med. Genomics, 3, 39 (2010)
[80] Perumal, S. S.; Shanthi, P.; Sachdanandam, P., Therapeutic effect of tamoxifen and energy-modulating vitamins on carbohydrate-metabolizing enzymes in breast cancer, Cancer Chemother. Pharmacol., 56, 1, 105-114 (2005)
[81] Ghobrial, I. M.; Witzig, T. E.; Adjei, A. A., Targeting apoptosis pathways in cancer therapy, CA-Cancer J. Clin., 55, 3, 178-194 (2005)
[82] Ellis, L. M.; Hicklin, D. J., VEGF-targeted therapy: mechanisms of anti-tumour activity, Nat. Rev. Cancer, 8, 579-591 (2008)
[83] Anastas, J. N.; Moon, R. T., WNT signalling pathways as therapeutic targets in cancer, Nat. Rev. Cancer, 13, 1, 11-26 (2013)
[84] Luo, W.; Friedman, M. S.; Shedden, K.; Hankenson, K. D.; Woolf, P. J., GAGE: generally applicable gene set enrichment for pathway analysis, BMC Bioinformatics, 10, 161 (2009)
[85] Chandriani, S.; Frengen, E.; Cowling, V. H.; Pendergrass, S. A.; Perou, C. M.; Whitfield, M. L.; Cole, M. D., A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response, PLoS One, 4, 8, e6693 (2009)
[86] Cancer Genome Atlas, N., Comprehensive molecular portraits of human breast tumours, Nature, 490, 7418, 61-70 (2012)
[87] Zenz, R.; Eferl, R.; Kenner, L.; Florin, L.; Hummerich, L.; Mehic, D.; Scheuch, H.; Angel, P.; Tschachler, E.; Wagner, E. F., Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins, Nature, 437, 7057, 369-375 (2005)
[88] Basset-Seguin, N.; Escot, C.; Moles, J. P.; Blanchard, J. M.; Kerai, C.; Guilhou, J. J., C-fos and c-jun proto-oncogene expression is decreased in psoriasis: an in situ quantitative analysis, J. Invest. Dermatol., 97, 4, 672-678 (1991)
[89] Kulke, R.; Bornscheuer, E.; Schluter, C.; Bartels, J.; Rowert, J.; Sticherling, M.; Christophers, E., The CXC receptor 2 is overexpressed in psoriatic epidermis, J. Invest. Dermatol., 110, 1, 90-94 (1998)
[90] Reich, K.; Garbe, C.; Blaschke, V.; Maurer, C.; Middel, P.; Westphal, G.; Lippert, U.; Neumann, C., Response of psoriasis to interleukin-10 is associated with suppression of cutaneous type 1 inflammation, downregulation of the epidermal interleukin-8/CXCR2 pathway and normalization of keratinocyte maturation, J. Invest. Dermatol., 116, 2, 319-329 (2001)
[91] Cataisson, C.; Pearson, A. J.; Tsien, M. Z.; Mascia, F.; Gao, J. L.; Pastore, S.; Yuspa, S. H., CXCR2 ligands and G-CSF mediate PKCalpha-induced intraepidermal inflammation, J. Clin. Invest., 116, 10, 2757-2766 (2006)
[92] Ainali, C.; Valeyev, N.; Perera, G.; Williams, A.; Gudjonsson, J. E.; Ouzounis, C. A.; Nestle, F. O.; Tsoka, S., Transcriptome classification reveals molecular subtypes in psoriasis, BMC Genomics, 13, 472 (2012)
[93] Su, J. J.; Yoon, B. J.; Dougherty, E. R., Accurate and reliable cancer classification based on probabilistic inference of pathway activity, PLoS One, 4, 12, e8161 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.