×

Generalized functional extended redundancy analysis. (English) Zbl 1314.62272

Summary: Functional extended redundancy analysis (FERA) was recently developed to integrate data reduction into functional linear models. This technique extracts a component from each of multiple sets of predictor data in such a way that the component accounts for the maximum variance of response data. Moreover, it permits predictor and/or response data to be functional. FERA can be of use in describing overall characteristics of each set of predictor data and in summarizing the relationships between predictor and response data. In this paper, we extend FERA into the framework of generalized linear models (GLM), so that it can deal with response data generated from a variety of distributions. Specifically, the proposed method reduces each set of predictor functions to a component and uses the component for explaining exponential-family responses. As in GLM, we specify the random, systematic, and link function parts of the proposed method. We develop an iterative algorithm to maximize a penalized log-likelihood criterion that is derived in combination with a basis function expansion approach. We conduct two simulation studies to investigate the performance of the proposed method based on synthetic data. In addition, we apply the proposed method to two examples to demonstrate its empirical usefulness.

MSC:

62P15 Applications of statistics to psychology
62J12 Generalized linear models (logistic models)
62-07 Data analysis (statistics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dauxois, J., Pousse, A., & Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. Journal of Multivariate Analysis, 12, 136-154. · Zbl 0539.62064 · doi:10.1016/0047-259X(82)90088-4
[2] Davidian, M., Lin, X., & Wang, J.-L. (2004). Introduction: emerging issues in longitudinal and functional data analysis. Statistica Sinica, 14, 613-614.
[3] Febrero-Bande, M., & Oviedo de la Fuente, M. (2012). Statistical computing in functional data analysis: the R package fda.usc. Journal of Statistical Software, 51, 1-28.
[4] Ferraty, F. (2011). Recent advances in functional data analysis and related topics. New York: Springer. · Zbl 1220.62003
[5] Ferraty, F., Laksaci, A., Tadj, A., & Vieu, P. (2011). Kernel regression with functional response. Electronic Journal of Statistics, 5, 159-171. · Zbl 1274.62281 · doi:10.1214/11-EJS600
[6] Ferraty, F., Mas, A., & Vieu, P. (2007). Nonparametric regression on functional data: inference and practical. Australian & New Zealand Journal of Statistics, 49, 267-286. · Zbl 1136.62031 · doi:10.1111/j.1467-842X.2007.00480.x
[7] Ferraty, F., & Romain, Y. (2011). The Oxford handbook of functional data analysis. Oxford: University Press. · Zbl 1284.62001
[8] Ferraty, F., Van Keilegom, I., & Vieu, P. (2012). Regression when both response and predictor are functions. Journal of Multivariate Analysis, 109, 10-28. · Zbl 1241.62054 · doi:10.1016/j.jmva.2012.02.008
[9] Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: theory and practice. New York: Springer. · Zbl 1119.62046
[10] González-Manteiga, W., & Vieu, P. (2007). Statistics for functional data. Computational Statistics & Data Analysis, 51, 4788-4792. · Zbl 1162.62338 · doi:10.1016/j.csda.2006.10.017
[11] Green, P.J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternative (with discussion). Journal of the Royal Statistical Society. Series B, 46, 149-192. · Zbl 0555.62028
[12] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). New York: Springer. · Zbl 1273.62005 · doi:10.1007/978-0-387-84858-7
[13] Heyde, C.C. (1997). Quasi-likelihood and its applications. A general approach to optimal parameter estimation. New York: Springer. · Zbl 0879.62076
[14] Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: application to nonorthogonal problems. Technometrics, 12, 69-82. · Zbl 0202.17206 · doi:10.1080/00401706.1970.10488635
[15] Hwang, H. (2009). Regularized generalized structured component analysis. Psychometrika, 74, 517-530. · Zbl 1272.62121 · doi:10.1007/s11336-009-9119-y
[16] Hwang, H., Suk, H.W., Lee, J.-H., Moskowitz, D.S., & Lim, J. (2012). Functional extended redundancy analysis. Psychometrika, 77, 524-542. · Zbl 1272.62122 · doi:10.1007/s11336-012-9268-2
[17] Hwang, H., & Tomiuk, M.A. (2010). Fuzzy clusterwise quasi-likelihood generalized linear models. Advances in Data Analysis and Classification, 4, 255-270. · Zbl 1284.62379 · doi:10.1007/s11634-010-0069-0
[18] Kreibig, S.D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84, 394-421. · doi:10.1016/j.biopsycho.2010.03.010
[19] Le Cessie, S., & Van Houwelingen, J.C. (1992). Ridge estimators in logistic regression. Applied Statistics, 41, 191-201. · Zbl 0825.62593 · doi:10.2307/2347628
[20] Lee, A., & Silvapulle, M. (1988). Ridge estimation in logistic regression. Communications in Statistics. Simulation and Computation, 17, 1231-1257. · Zbl 0695.62173 · doi:10.1080/03610918808812723
[21] Lian, H. (2011). Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics, 5, 31-40. · Zbl 1274.62291 · doi:10.1214/11-EJS595
[22] McCullagh, P. (1983). Quasi-likelihood functions. The Annals of Statistics, 11, 59-67. · Zbl 0507.62025 · doi:10.1214/aos/1176346056
[23] McCullagh, P., & Nelder, J.A. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall/CRC. · Zbl 0588.62104 · doi:10.1007/978-1-4899-3242-6
[24] McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley. · Zbl 0963.62061
[25] Nelder, J.A., & Wedderburn, R.W.M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A, 135, 370-384. · doi:10.2307/2344614
[26] Ramsay, J.O., & Dalzell, C.J. (1991). Some tools for functional data analysis (with discussion). Journal of the Royal Statistical Society. Series B, 53, 539-572. · Zbl 0800.62314
[27] Ramsay, J.O., Hooker, G., & Graves, S. (2009). Functional data analysis with R and Matlab. New York: Springer. · Zbl 1179.62006 · doi:10.1007/978-0-387-98185-7
[28] Ramsay, J.O., & Silverman, B.W. (1997). Functional data analysis (1st ed.). New York: Springer. · Zbl 0882.62002 · doi:10.1007/978-1-4757-7107-7
[29] Ramsay, J.O., & Silverman, B.W. (2002). Applied functional data analysis: methods and case studies. New York: Springer. · Zbl 1011.62002
[30] Ramsay, J.O., & Silverman, B.W. (2005). Functional data analysis (2nd ed.). New York: Springer. · Zbl 1079.62006
[31] Rice, J.A. (2004). Functional and longitudinal data analysis: perspectives on smoothing. Statistica Sinica, 14, 631-647. · Zbl 1073.62033
[32] Rice, J.A., & Silverman, B.W. (1991). Estimating the mean and covariance structure non-parametrically when the data are curves. Journal of the Royal Statistical Society. Series B, 53, 233-243. · Zbl 0800.62214
[33] Richards, F.S.G. (1961). A method of maximum-likelihood estimation. Journal of the Royal Statistical Society. Series B, 23, 469-475. · Zbl 0104.13003
[34] Takane, Y., & Hwang, H. (2005). An extended redundancy analysis and its applications to two practical examples. Computational Statistics & Data Analysis, 49, 785-808. · Zbl 1429.62226 · doi:10.1016/j.csda.2004.06.004
[35] Valderrama, M.J. (2007). An overview to modelling functional data. Computational Statistics, 22, 331-334. · doi:10.1007/s00180-007-0043-2
[36] Wedderburn, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447. · Zbl 0292.62050
[37] Wedel, M., & DeSarbo, W.S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 21-55. · Zbl 0825.62611 · doi:10.1007/BF01202266
[38] Yee, T.W., & Hastie, T.J. (2003). Reduced-rank vector generalized linear models. Statistical Modelling, 3, 15-41. · Zbl 1195.62123 · doi:10.1191/1471082X03st045oa
[39] Yee, T.W., & Wild, C.J. (1999). Vector generalized additive models. Journal of the Royal Statistical Society. Series B, 58, 481-493. · Zbl 0855.62059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.