×

Optimal control oriented to therapy for a free-boundary tumor growth model. (English) Zbl 1314.92080

Summary: This paper is devoted to present and solve some optimal control problems, oriented to therapy, for a particular model of tumor growth. In the considered systems, the state is given by one or several functions that provide information on the cell population and also the tumor shape evolution and the control is a time dependent function associated to the therapy strategy (in practice, a cytotoxic drug). We first present and analyze the model (based on PDEs) and the related optimal control problems. The solutions are expected to provide the best therapy strategies for a given set of constraints (here, the cost or objective function is a measure of the number of cells at a given final time \(T\)). We also recall some mathematical techniques for solving the related optimization problems and we illustrate the behavior of the methods and the validity of the models with several numerical experiments. In view of the results, we are able to design appropriate strategies that, at least to some extent, are confirmed by real data. Finally, we present some conclusions and indications on future work.

MSC:

92C50 Medical applications (general)
35J47 Second-order elliptic systems
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35R35 Free boundary problems for PDEs

Software:

CONDOR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Araujo, R. P.; McElwain, D. L., A history of the study of solid tumour growththe contribution of mathematical modelling, Bull. Math. Biol., 66, 5, 1039-1091 (2004) · Zbl 1334.92187
[2] Bazaliy, B. V.; Friedman, A., A free boundary problem for a elliptic-parabolic systemapplication to a model of tumor growth, Commun. Partial Diff. Equation, 28, 3-4, 517-560 (2003) · Zbl 1031.35151
[3] Bellman, R., Mathematical Methods in Medicine (1983), World Scientific: World Scientific Singapore · Zbl 0527.92004
[4] Burton, A. C., Rate of growth of solid tumors as a problem of diffusion, Growth, 30, 2, 229-244 (1966)
[5] Byrne, H. M., Dissecting cancer through mathematics: from the cell to the animal model, Nat. Rev. Cancer, 10, 221-230 (2010)
[6] Byrne, H. M.; Chaplain, M. A.J., Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130, 2, 151-181 (1995) · Zbl 0836.92011
[7] Byrne, H. M.; Chaplain, M. A.J., Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135, 2, 187-216 (1996) · Zbl 0856.92010
[8] Calzada, M. C.; Camacho, G.; Fernández-Cara, E.; Marín, M., Fictitious domains and level sets for moving boundary problems. Applications to the numerical simulation of tumor growth, J. Comput. Phys., 230, 4, 1335-1358 (2011) · Zbl 1207.92020
[9] Casciari, J. J.; Sotirchos, S. V.; Sutherland, R. M., Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids, Cell Proliferation, 25, 1-22 (1992)
[10] Chaplain, M., Avascular growth, angiogenesis and vascular growth in solid tumoursthe mathematical modelling of the stages of tumour development, Math. Comput. Model., 23, 47-87 (1996) · Zbl 0859.92012
[11] Cristini, V.; Lowengrub, J.; Nie, Q., Nonlinear simulation of tumor growth, J. Math. Biol, 46, 191-224 (2003) · Zbl 1023.92013
[12] Cui, S.; Friedman, A., Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl., 255, 636-677 (2001) · Zbl 0984.35169
[13] DeVita, V. T.; Lawrence, T. S.; Rosenberg, S. A., Principles and Practice of Oncology (1985), J.B. Lippincott Company: J.B. Lippincott Company Philadelphia
[14] Fang, J.; Sullivan, M.; McCutchan, T. F., The effects of glucose concentration on the reciprocal regulation of rRNA promoters in plasmodium falciparum, J. Biol. Chem., 279, 720-725 (2004)
[15] Fedkiw, R.; Osher, S., Level Set Methods and Dynamic Implicit Surfaces (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1026.76001
[16] Fontelos, M. A.; Friedman, A., Symmetry-breaking bifurcations of charged drops, Arch. Ration. Mech. Anal., 172, 267-294 (2004) · Zbl 1094.76022
[17] Friedman, A., A hierarchy of cancer models and their mathematical challenges, Discrete Contin. Dyn. Syst. Ser. B, 4, 1, 147-159 (2004) · Zbl 1052.35094
[19] Friedman, A., Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17, Suppl., 1751-1772 (2007) · Zbl 1135.92013
[20] Friedman, A.; Reitich, F., Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38, 262-284 (1999) · Zbl 0944.92018
[21] Friedman, A.; Reitich, F., Symmetry-breaking bifurcation of analytic solutions to free boundary problemsan application to a model of tumor growth, Trans. Amer. Math. Soc., 353, 1587-1634 (2000) · Zbl 0983.35019
[22] Friedman, A.; Reitich, F., On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumor, Math. Models Meth. Appl. Sci., 77, 1-25 (2001) · Zbl 1013.92024
[23] Galmarini, D.; Galmarini 1, C. M.; Galmarini, F. C., Cancer chemotherapya critical analysis of its 60 years of history, Crit. Rev. Oncol. Hematol., 84, 2, 181-199 (2012)
[24] Garner, A. L.; Lau, Y. Y.; Jordan, D. W.; Uhler, M. D.; Gilgenbach, R. M., Implications of a simple mathematical model to cancer cell population dynamics, Cell Proliferation, 39, 15-28 (2006)
[25] Greenspan, H. P., Models for the growth of a solid tumor by diffusion, Stud. Appl. Math., 52, 317-340 (1972) · Zbl 0257.92001
[26] Greenspan, H. P., On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56, 229-242 (1976)
[27] Jackson, T. L., Intracellular accumulation and mechanism of action of Doxorubicin in a spatio-temporal tumor model, J. Theor. Biol., 220, 201-213 (2003) · Zbl 1464.92066
[28] Kiran, K. L.; Jayachandran, D.; Lakshminarayanan, S., Mathematical modelling of avascular tumour growth based on diffusion of nutrients and its validation, Can. J. Chem. Eng., 87, 732-740 (2009)
[29] Kollmannsberger, C., First-line high-dose chemotherapy ±radiation therapy in patients with metastatic germ-cell cancer and brain metastases, Ann Oncol., 11, 553-559 (2000)
[31] Levin, V. A., Relationship of octanol-water partition coefficient molecular weight to rat brain capillary permeability, J. Med. Chem., 23, 682-684 (1980)
[32] Liang, Y.; Leung, K. S.; Mok, T. S.K., A novel evolutionary drug scheduling model in cancer chemotherapy, IEEE Trans. Inf. Technol. Biomed., 10, 2, 237-245 (2006)
[33] Lowengrub, J. S., Nonlinear modelling of cancerbridging the gap between cells and tumours, Nonlinearity, 23, R1-R91 (2010) · Zbl 1181.92046
[35] Martin, R. B.; Teo, K. L., Optimal Control of Drug Administration in Cancer Chemotherapy (1994), World Scientific Pub Co Inc.: World Scientific Pub Co Inc. Singapore · Zbl 0870.92006
[36] Martin, R. B.; Fisher, M. E.; Minchin, R. F.; Teo, K. L., A mathematical model of cancer chemotherapy with an optimal selection of parameters, Math. Biosci., 99, 2, 205-230 (1990) · Zbl 0724.92016
[38] Motzer, R. J.; Mazumdar, M.; Gulati, S. C., Phase II trial of high-dose carboplatin and etoposide with autologous bone marrow transplantation in first-line therapy for patients with poor-risk germ cell tumors, J. Nat. Cancer Inst., 85, 1828-1835 (1993)
[39] Motzer, R. J.; Mazumdar, M.; Bajorin, D. F.; Bosl, G. J.; Lyn, P.; Vlamis, V., High-dose carboplatin, etoposide, and cyclophosphamide with autologous bone marrow transplantation in first-line therapy for patients with poor-risk germ cell tumors, J. Clin. Oncol., 15, 2546-2552 (1997)
[40] Norris, E. S.; King, J. R.; Byrne, H. M., Modelling the response of spatially structured tumours to chemotherapydrug kinetics, Math. Comput. Model., 43, 820-837 (2006) · Zbl 1130.92033
[41] Piantadosi, S., A model of growth with first-order birth and death rates, Comput. Biomed. Res., 18, 220-232 (1985)
[42] Roose, T.; Chapman, S. J.; Maini, P. K., Mathematical models of avascular tumor growth, SIAM Rev., 49, 2, 179-208 (2007) · Zbl 1117.93011
[43] Sethian, J. A., Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0973.76003
[44] Sherratt, J. A.; Chaplain, M. A.J., A new mathematical model for avascular tumour growth, J. Math. Biol., 43, 4, 291-312 (2001) · Zbl 0990.92021
[46] Sinek, J. P.; Frieboes, H.; Zheng, X.; Cristini, V., Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles, Biomed. Microdevices, 6, 297-309 (2004)
[47] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[48] Svensson, H., In vitro and in vivo activities of Doxorubicin prodrug in combination with monoclonal antibody filactamase conjugates, Cancer Res., 55, 25-57 (1995)
[49] Swan, G. W., Role of optimal control theory in cancer chemotherapy, Math. Biosci., 101, 2, 237-284 (1990) · Zbl 0702.92007
[50] Tanaka, M. L.; Debinski, W.; Puri, I. K., Hybrid mathematical model of glioma progression, Cell Proliferation, 42, 637-646 (2009)
[51] Tindall, M.; Please, C., Modelling the cell cycle and cell movement in multicellular tumour spheroids, Bull. Math. Biol., 69, 1147-1165 (2007) · Zbl 1298.92021
[52] Vanden Berghen, F.; Bersini, H., CONDOR, a new parallel, constrained extension of Powell’s UOBYQA algorithmexperimental results and comparison with the DFO algorithm, J. Comput. Appl. Math. Elsevier, 181, 1, 157-175 (2005) · Zbl 1072.65088
[53] Ward, J. P.; King, J. R., Mathematical modelling of avascular-tumour growth, Math. Med. Biol., 14, 39-69 (1997) · Zbl 0866.92011
[54] Weinberg, B. D., Modeling Doxorubicin transport to improve intratumoral drug delivery to RF ablated tumors, J. Controlled Release, 124, 11-19 (2007)
[55] Yang, H. M., Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound, Theor. Bio. Med. Model, 9, 2, 1-39 (2012)
[56] Zheng, X.; Wise, S.; Cristini, V., Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. Math. Biol., 67, 211-259 (2005) · Zbl 1334.92214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.