×

An iterative method for computing robustness of polynomial stability. (English) Zbl 1327.15013

Summary: We propose a method for computing the distance of a stable polynomial to the set of unstable ones (both in the Hurwitz and in the Schur case). The method is based on the reformulation of the problem as the structured distance to instability of a companion matrix associated to a polynomial. We first introduce the structured \(\varepsilon\)-pseudospectrum of a companion matrix and write a system of ordinary differential equations which maximize the real part (or the absolute value) of elements of the structured \(\varepsilon\)-pseudospectrum and then exploit the knowledge of the derivative of the maximizers with respect to \(\varepsilon\) to devise a quadratically convergent iteration. Furthermore we use a variant of the same ODEs to compute the boundary of structured pseudospectra and compare them to unstructured ones. An extension to constrained perturbations is also considered.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
65K05 Numerical mathematical programming methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barmish, B. R., Invariance of the strict Hurwitz property for polynomials with perturbed coefficients, IEEE Trans. Automat. Control, 29, 10, 935-936 (1984) · Zbl 0549.93046
[2] Hinrichsen, D.; Pritchard, A. J., Stability radius for structured perturbations and the algebraic Riccati equation, Systems Control Lett., 8, 2, 105-113 (1986) · Zbl 0626.93054
[3] Vicino, A., Some results on robust stability of discrete-time systems, IEEE Trans. Automat. Control, 33, 9, 844-847 (1988) · Zbl 0645.93046
[4] Hinrichsen, D.; Pritchard, A. J., An application of state space methods to obtain explicit formulae for robustness measures of polynomials, (Robustness in Identification and Control (Torino, 1988). Robustness in Identification and Control (Torino, 1988), Appl. Inform. Tech. (1989), Plenum: Plenum New York), 183-206
[5] Hinrichsen, D.; Pritchard, A. J., Robustness measures for linear systems with application to stability radii of Hurwitz and Schur polynomials, Internat. J. Control, 55, 4, 809-844 (1992) · Zbl 0747.93017
[6] Wu, Q. H.; Mansour, M., On the stability radius of a Schur polynomial, Systems Control Lett., 21, 3, 199-205 (1993) · Zbl 0784.93079
[7] Toh, K.-C.; Trefethen, L. N., Pseudozeros of polynomials and pseudospectra of companion matrices, Numer. Math., 68, 3, 403-425 (1994) · Zbl 0808.65053
[8] Teboulle, M.; Kogan, J., Applications of optimization methods to robust stability of linear systems, J. Optim. Theory Appl., 81, 1, 169-192 (1994) · Zbl 0804.93044
[9] Qiu, L.; Davison, E. J., A unified approach for the stability robustness of polynomials in a convex set, Automatica J. IFAC, 28, 5, 945-959 (1992) · Zbl 0766.93065
[10] Bhattacharyya, S. P.; Datta, A.; Keel, L. H., (Linear Control Theory: Structure, Robustness, and Optimization. Linear Control Theory: Structure, Robustness, and Optimization, Automation and Control Engineering (2009), CRC Press: CRC Press Boca Raton, FL) · Zbl 1235.93120
[11] Kharitonov, V. L., The Routh-Hurwitz problem for families of polynomials and quasipolynomials, Mat. Fiz., 26, 69-79 (1979) · Zbl 0445.93027
[12] Mosier, R. G., Root neighborhoods of a polynomial, Math. Comp., 47, 175, 265-273 (1986) · Zbl 0598.65023
[13] Guglielmi, N.; Overton, M. L., Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix, SIAM J. Matrix Anal. Appl., 32, 4, 1166-1192 (2011) · Zbl 1248.65034
[14] Kressner, Daniel; Vandereycken, Bart, Subspace methods for computing the pseudospectral abscissa and the stability radius, SIAM J. Matrix Anal. Appl., 35, 1, 292-313 (2014) · Zbl 1306.65187
[15] Guglielmi, N.; Lubich, C., Low-rank dynamics for computing extremal points of real pseudospectra, SIAM J. Matrix Anal. Appl., 34, 1, 40-66 (2013) · Zbl 1272.65032
[16] Guglielmi, N.; Manetta, M., Approximating real stability radii, IMA J. Numer. Anal., 35, 1402-1425 (2015) · Zbl 1328.65168
[17] Guglielmi, Nicola; Gürbüzbalaban, Mert; Overton, Michael L., Fast approximation of the \(H_\infty\) norm via optimization over spectral value sets, SIAM J. Matrix Anal. Appl., 34, 2, 709-737 (2013) · Zbl 1271.93057
[18] Guglielmi, N.; Kressner, D.; Lubich, C., Computing extremal points of symplectic pseudospectra and solving symplectic matrix nearness problems, SIAM J. Matrix Anal. Appl., 35, 4, 1407-1428 (2014) · Zbl 1315.65070
[19] Guglielmi, N.; Kressner, D.; Lubich, C., Low rank differential equations for Hamiltonian matrix nearness problems, Numer. Math., 129, 2, 279-319 (2015) · Zbl 1312.65070
[20] Hinrichsen, D.; Pritchard, A. J., (Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness, Texts in Applied Mathematics, vol. 48 (2010), Springer: Springer Heidelberg), Corrected reprint [of MR2116013] · Zbl 1183.93002
[22] Graillat, S.; Langlois, P., Real and complex pseudozero sets for polynomials with applications, Theor. Inform. Appl., 41, 1, 45-56 (2007) · Zbl 1163.65023
[23] Horn, R. A.; Johnson, C. R., Matrix Analysis (2013), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1267.15001
[24] Trefethen, L. N.; Embree, M., Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators (2005), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1085.15009
[25] Guglielmi, N.; Lubich, C., Differential equations for roaming pseudospectra: paths to extremal points and boundary tracking, SIAM J. Numer. Anal., 49, 3, 1194-1209 (2011) · Zbl 1232.15009
[26] Kato, T., (Perturbation Theory for Linear Operators. Perturbation Theory for Linear Operators, Classics in Mathematics (1995), Springer-Verlag: Springer-Verlag Berlin), Reprint of the 1980 edition · Zbl 0836.47009
[28] Wright, T. G.; Trefethen, L. N., Large-scale computation of pseudospectra using ARPACK and eigs, SIAM J. Sci. Comput., 23, 2, 591-605 (2001), Copper Mountain Conference (2000) · Zbl 0992.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.