×

A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. (English) Zbl 1325.65139

Summary: Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to geometry, they can provide high order convergence, they allow for local refinement, and they are easy to implement in higher dimensions. For global RBF methods, one of the major disadvantages is the computational cost associated with the dense linear systems that arise. Therefore, research is currently directed towards localized RBF approximations such as the RBF partition of unity collocation method (RBF-PUM) proposed here. The objective of this paper is to establish that RBF-PUM is viable for parabolic PDEs of convection-diffusion type. The stability and accuracy of RBF-PUM is investigated partly theoretically and partly numerically. Numerical experiments show that high-order algebraic convergence can be achieved for convection-diffusion problems. Numerical comparisons with finite difference and pseudospectral methods have been performed, showing that RBF-PUM is competitive with respect to accuracy, and in some cases also with respect to computational time. As an application, RBF-PUM is employed for a two-dimensional American option pricing problem. It is shown that using a node layout that captures the solution features improves the accuracy significantly compared with a uniform node distribution.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
91G60 Numerical methods (including Monte Carlo methods)
91B24 Microeconomic theory (price theory and economic markets)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727-758 (1997). doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N · Zbl 0949.65117
[2] Ballestra, L.V., Pacelli, G.: Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng. Anal. Bound. Elem. 35(9), 1075-1084 (2011). doi:10.1016/j.enganabound.2011.02.008 · Zbl 1259.65157
[3] Ballestra, L.V., Pacelli, G.: A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng. Anal. Bound. Elem. 36(11), 1546-1554 (2012). doi:10.1016/j.enganabound.2012.04.011 · Zbl 1352.65385
[4] Ballestra, L.V., Pacelli, G.: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J. Econ. Dyn. Control 37(6), 1142-1167 (2013). doi:10.1016/j.jedc.2013.01.013 · Zbl 1402.91887
[5] Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9(1), 69-107 (1996). doi:10.1093/rfs/9.1.69
[6] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637-654 (1973) · Zbl 1092.91524
[7] Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Financ. 13(3), 345-382 (2003). doi:10.1111/1467-9965.00020 · Zbl 1092.91022
[8] Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (1996) · Zbl 1140.91041
[9] Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20(3), 297-338 (2002). doi:10.1198/073500102288618397
[10] Fasshauer, G., Khaliq, A.Q.M., Voss, D.A.: Using meshfree approximation for multi asset American options. J. Chin. Inst. Eng. 27(4), 563-571 (2004). doi:10.1080/02533839.2004.9670904
[11] Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6, pp. xviii+500. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007) · Zbl 1123.65001
[12] Fichera, G.: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. VIII, ser. 5, pp. 3-30 (1956) · Zbl 0075.28102
[13] Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869-892 (2011). doi:10.1137/09076756X · Zbl 1227.65018
[14] Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379-398 (2007). doi:10.1016/j.camwa.2007.01.028 · Zbl 1128.41001
[15] Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11), 1691-1704 (1980). doi:10.1002/nme.1620151110 · Zbl 0444.65011
[16] Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2(1), 84-90 (1960). doi:10.1007/BF01386213 · Zbl 0090.34505
[17] Hon, Y.C., Mao, X.Z.: A radial basis function method for solving options pricing models. J. Financ. Eng. 8, 31-49 (1999)
[18] In’t Hout, K.J., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7(2), 303-320 (2010) · Zbl 1499.65276
[19] Ito, K., Toivanen, J.: Lagrange multiplier approach with optimized finite difference stencils for pricing American options under stochastic volatility. SIAM J. Sci. Comput. 31(4), 2646-2664 (2009). doi:10.1137/07070574X · Zbl 1201.35024
[20] Janson, S., Tysk, J.: Feynman-Kac formulas for Black-Scholes-type operators. Bull. Lond. Math. Soc. 38(2), 269-282 (2006). doi:10.1112/S0024609306018194 · Zbl 1110.35021
[21] Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38(4), 1357-1368 (2000). doi:10.1137/S0036142999355921. · Zbl 0990.35013
[22] Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48(8), 1086-1101 (2002) · Zbl 1216.91039
[23] Kwok, Y.K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer, Berlin (2008) · Zbl 1146.91002
[24] Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103-130 (2005). doi:10.1016/j.camwa.2005.01.010 · Zbl 1074.41012
[25] Larsson, E., Gomes, S., Heryudono, A., Safdari-Vaighani, A.: Radial basis function methods in computational finance. In: Proceedings of the CMMSE 2013, p. 12, Almería, Spain (2013) · Zbl 1325.65139
[26] Larsson, E., Heryudono, A.: A partition of unity radial basis function collocation method for partial differential equations (2015, in preparation) · Zbl 1325.65139
[27] Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096-A2119 (2013). doi:10.1137/120899108 · Zbl 1362.65026
[28] McLain, D.H.: Two dimensional interpolation from random data. Comput. J. 19(2), 178-181 (1976). doi:10.1093/comjnl/19.2.178 · Zbl 0321.65009
[29] Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1-2), 125-144 (1976). doi:10.1016/0304-405X(76)90022-2 · Zbl 1131.91344
[30] Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Financ. 5, 69-97 (2002)
[31] Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of American multi-asset option problems. J. Comput. Appl. Math. 222(1), 3-16 (2008). doi:10.1016/j.cam.2007.10.041 · Zbl 1152.91542
[32] Persson, J., von Sydow, L.: Pricing American options using a space-time adaptive finite difference method. Math. Comput. Simulat. 80(9), 1922-1935 (2010). doi:10.1016/j.matcom.2010.02.008 · Zbl 1193.91156
[33] Pettersson, U., Larsson, E., Marcusson, G., Persson, J.: Improved radial basis function methods for multi-dimensional option pricing. J. Comput. Appl. Math. 222(1), 82-93 (2008). doi:10.1016/j.cam.2007.10.038 · Zbl 1151.91053
[34] Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. 31(4), 1578-1597 (2011). doi:10.1093/imanum/drq020 · Zbl 1232.41003
[35] Reddy, S.C., Trefethen, L.N.: Stability of the method of lines. Numer. Math. 62(2), 235-267 (1992). doi:10.1007/BF01396228 · Zbl 0734.65077
[36] Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32(1), 103-129 (2010). doi:10.1007/s10444-008-9089-0 · Zbl 1187.41001
[37] Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323-341 (2014). doi:10.1007/s00365-013-9211-5 · Zbl 1308.41002
[38] Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference (ACM ‘68), pp. 517-524. ACM, New York, NY (1968)
[39] Tavella, D., Randall, C.: Pricing Financial Instruments. Wiley, New York (2000)
[40] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[41] Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389-396 (1995). doi:10.1007/BF02123482 · Zbl 0838.41014
[42] Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Approximation Theory X (St. Louis, MO, 2001), pp. 473-483. Vanderbilt University Press, Nashville, TN (2002) · Zbl 1031.65022
[43] Wright, T.G.: EigTool. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/ (2002) · Zbl 1040.91058
[44] Wu, Z., Hon, Y.C.: Convergence error estimate in solving free boundary diffusion problem by radial basis functions method. Eng. Anal. Bound. Elem. 27, 73-79 (2003). doi:10.1016/S0955-7997(02)00083-8 · Zbl 1040.91058
[45] Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2), 199-218 (1998). doi:10.1016/S0377-0427(98)00037-5 · Zbl 0945.65005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.