×

CDFSIM: efficient stochastic simulation through decomposition of cumulative distribution functions of transformed spatial patterns. (English) Zbl 1322.65035

Summary: Simulation of categorical and continuous variables is performed using a new pattern-based simulation method founded upon coding spatial patterns in one dimension. The method consists of, first, using a spatial template to extract information in the form of patterns from a training image. Patterns are grouped into a pattern database and, then, mapped to one dimension. Cumulative distribution functions of the one-dimensional patterns are built. Patterns are then classified by decomposing the cumulative distribution functions, and calculating class or cluster prototypes. During the simulation process, a conditioning data event is compared to the class prototype, and a pattern is randomly drawn from the best matched class. Several examples are presented so as to assess the performance of the proposed method, including conditional and unconditional simulations of categorical and continuous data sets. Results show that the proposed method is efficient and very well performing in both two and three dimensions. Comparison of the proposed method to the filtersim algorithm suggests that it is better at reproducing the multi-point configurations and main characteristics of the reference images, while less sensitive to the number of classes and spatial templates used in the simulations.

MSC:

65C60 Computational problems in statistics (MSC2010)
62H35 Image analysis in multivariate analysis

Software:

SGeMS; CDFSIM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allard D, Froidevaux R, Biver P (2006) Conditional simulation of multi-type non stationary Markov object models respecting specified proportions. Math Geol 38(8):959-986 · Zbl 1131.60043 · doi:10.1007/s11004-006-9057-5
[2] Arpat GB (2004) Sequential simulation with patterns. PhD thesis, Stanford University
[3] Arpat G, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177-203 · doi:10.1007/s11004-006-9075-3
[4] Chatterjee S, Dimitrakopoulos R (2012) Multi-scale stochastic simulation with a wavelet-based approach. Comput Geosci 45:177-189 · doi:10.1016/j.cageo.2011.11.006
[5] Chatterjee S, Dimitrakopoulo R, Mustapha H (2012) Dimensional reduction of pattern-based simulation using wavelet analysis. Math Geosci 44(3):343-374 · doi:10.1007/s11004-012-9387-4
[6] Chilès JP, Delfiner P (1999) Geostatistics—modeling spatial uncertainty. Wiley, New York · Zbl 0922.62098 · doi:10.1002/9780470316993
[7] Comunian A, Renard P, Straubhaar J (2012) 3D multiple-point statistics simulation using 2D training images. Comput Geosci 40:49-65 · doi:10.1016/j.cageo.2011.07.009
[8] Daly, C.; Leuangthong, O. (ed.); Deutsch, CV (ed.), Higher order models using entropy, Markov random fields and sequential simulation, 215-225 (2004), Dordrecht
[9] Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York
[10] Dimitrakopoulos R, Mustapha H, Gloaguen E (2010) High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Math Geosci 42(1):65-99 · Zbl 1184.86012 · doi:10.1007/s11004-009-9258-9
[11] Gloaguen E, Dimitrakopoulos R (2009) Two-dimensional conditional simulation based on the wavelet decomposition of training images. Math Geosci 41(7):679-701 · Zbl 1174.94003 · doi:10.1007/s11004-009-9235-3
[12] Goovaerts P (1998) Geostatistics for natural resources evaluation. Oxford University Press, New York
[13] Guardiano, FB; Srivastava, RM; Soares (ed.), Multivariate geostatistics: beyond bivariate moments, 133-144 (1993), Dordrecht
[14] Honarkhah M, Caers J (2010) Stochastic simulation of patterns using distance-based pattern modelling. Math Geosci 42:487-517 · Zbl 1194.86038 · doi:10.1007/s11004-010-9276-7
[15] Huysmans M, Dassargues A (2011) Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces. Math Geosci 43(5):521-536. doi:10.1007/s11004-011-9336-7 · doi:10.1007/s11004-011-9336-7
[16] Journel, AG; Baafi, E. (ed.); Schofield, N. (ed.), Deterministic geostatistics: a new visit, 213-224 (1997), Dordrecht
[17] Liu Y (2006) Using the Snesim program for multiple-point statistical simulation. Comput Geosci 23(2006):1544-1563 · doi:10.1016/j.cageo.2006.02.008
[18] Mao, S.; Journel, AG, Generation of a reference petrophysical and seismic 3D data set: the Stanford V reservoir (1999)
[19] Mariethoz G, Renard P (2010) Reconstruction of incomplete data sets or images using direct sampling. Math Geosci 42(3):245-268 · Zbl 1184.86015 · doi:10.1007/s11004-010-9270-0
[20] Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point simulation. Water Resour Res. doi:10.1029/2008WR007621 · doi:10.1029/2008WR007621
[21] Mustapha H, Dimitrakopoulos R (2010) High-order stochastic simulation of complex spatially distributed natural phenomena. Math Geosci 42(5):455-473 · Zbl 1194.86040 · doi:10.1007/s11004-010-9291-8
[22] Mustapha H, Dimitrakopoulos R, Chatterjee S (2011) Geologic heterogeneity representation using high-order spatial cumulants for subsurface flow and transport simulations. Water Resour Res. doi:10.1029/2010WR009515 · doi:10.1029/2010WR009515
[23] Ortiz JM, Deutsh CV (2004) Indicator simulation accounting for multiple-point statistics. Math Geol 36(5):545-565 · Zbl 1267.86011 · doi:10.1023/B:MATG.0000037736.00489.b5
[24] Remy N, Boucher A, Wu J (2008) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge
[25] Sarma P, Durlofsky L, Aziz K (2008) Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math Geosci 40(1):3-32 · Zbl 1144.86004 · doi:10.1007/s11004-007-9131-7
[26] Scheidt C, Caers J (2009) Representing spatial uncertainty using distances and kernels. Math Geosci 41:397-419 · Zbl 1163.86317 · doi:10.1007/s11004-008-9186-0
[27] Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305-328 · Zbl 1213.86018 · doi:10.1007/s11004-011-9328-7
[28] Strebelle S (2000) Sequential simulation drawing structures from training images. PhD thesis, Stanford University
[29] Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1-21 · Zbl 1036.86013 · doi:10.1023/A:1014009426274
[30] Tjelmeland H (1998) Markov random fields with higher order interactions. Scand J Stat 25:415-433 · Zbl 0928.60049 · doi:10.1111/1467-9469.00113
[31] Tjelmeland, H.; Eidsvik, J., Directional Metropolis: hastings updates for conditionals with nonlinear likelihoods, No. 1, 95-104 (2004), Berlin
[32] Wu J, Zhang T, Journel A (2008) Fast FILTERSIM simulation with score-based distance. Math Geosci 40(7):773-788 · Zbl 1174.86311 · doi:10.1007/s11004-008-9157-5
[33] Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63-80 · Zbl 1119.86313 · doi:10.1007/s11004-005-9004-x
[34] Zhang T, Stein Inge Pedersen SI, Christen Knudby C, McCormick D (2012) Memory-efficient categorical multi-point statistics algorithms based on compact search trees. Math Geosci 44(7):863-879 · Zbl 1383.62181 · doi:10.1007/s11004-012-9412-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.