×

Estimation and assessment of Markov multistate models with intermittent observations on individuals. (English) Zbl 1322.62027

Summary: Multistate models provide important methods of analysis for many life history processes, and this is an area where John Klein made numerous contributions. When individuals in a study group are observed continuously so that all transitions between states, and their times, are known, estimation and model checking is fairly straightforward. However, individuals in many studies are observed intermittently, and only the states occupied at the observation times are known. We review methods of estimation and assessment for Markov models in this situation. Numerical studies that show the effects of inter-observation times are provided, and new methods for assessing fit are given. An illustration involving viral load dynamics for HIV-positive persons is presented.

MSC:

62-07 Data analysis (statistics) (MSC2010)
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

msm; invGauss
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aalen OO, Borgan O, Fekjaer H (2001) Covariate adjustment of event histories estimated from Markov chains: the additive approach. Biometrics 57:993-1001 · Zbl 1209.62247 · doi:10.1111/j.0006-341X.2001.00993.x
[2] Aalen OO, Borgan O, Gjessing HK (2008) Survival and Event History Analysis: A Process Point of View. Springer Science + Business Media LLC, New York · Zbl 1204.62165 · doi:10.1007/978-0-387-68560-1
[3] Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical Models Based on Counting Processes. Springer-Verlag, New York · Zbl 0769.62061 · doi:10.1007/978-1-4612-4348-9
[4] Andersen PK, Klein JP (2007) Regression analysis for multistate models based on a pseudo-value approach, with applications to bone marrow transplantation studies. Scandinavian Journal of Statistics 34:3-16 · Zbl 1142.62053 · doi:10.1111/j.1467-9469.2006.00526.x
[5] Cook RJ (2000) Information and efficiency considerations in planning studies based on two-state Markov process. Journal of Statistical Research 34:161-178
[6] Cook RJ, Lawless JF (2007) Statistical Analysis of Recurrent Events. Springer Science+ Business Media LLC, New York · Zbl 1159.62061
[7] Cook RJ, Lawless JF (2014) Statistical issues in modeling chronic disease in cohort studies. Statistics in Biosciences 6:127-161 · doi:10.1007/s12561-013-9087-8
[8] Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee KA (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. Journal of the American Statistical Association 104:60-75 · Zbl 1388.62281 · doi:10.1198/jasa.2009.0004
[9] Datta S, Satten GA (2001) Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models. Statistics and Probability Letters 55:403-411 · Zbl 0998.62072 · doi:10.1016/S0167-7152(01)00155-9
[10] Datta S, Satten GA (2002) Estimation of integrated transition hazards and stage occupancy probabilities for non-Markov systems under dependent censoring. Biometrics 58:792-802 · Zbl 1210.62115 · doi:10.1111/j.0006-341X.2002.00792.x
[11] de Stavola BL (1988) Testing departures from time homogeneity in multistate Markov processes. Applied Statistics 37:242-250 · doi:10.2307/2347343
[12] Gentleman RC, Lawless JF, Lindsey JC, Yan P (1994) Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease. Statistics in Medcine 13:805-821 · doi:10.1002/sim.4780130803
[13] Grennan JT et al (2012) Magnitude of virologic blips is associated with a higher risk for virologic rebound in HIV-infected individuals: a recurrent events analysis. Journal of Infectious Diseases 205:1230-1238 · doi:10.1093/infdis/jis104
[14] Hwang W, Brookmeyer R (2003) Design of panel studies for disease progression with multiple stages. Lifetime Data Analysis 9:261-274 · Zbl 1116.62431 · doi:10.1023/A:1025884719728
[15] Jackson CH (2011) Multi-state models for panel data: the msm package for R. Journal of Statistical Software 38(8):1-28
[16] Kalbfleisch JD, Lawless JF (1985) The analysis of panel data under a Markov assumption. Journal of the American Statistical Association. 80:863-871 · Zbl 0586.62136 · doi:10.1080/01621459.1985.10478195
[17] Kalbfleisch JD, Lawless JF (1989) Some statistical methods for panel life history data. In: Proceedings of the Statistics Canada Symposium on the Analysis of Data in Time. Ottawa, Statistics Canada, pp 185-192
[18] Klein JP, Shu Y (2002) Multi-state models for bone transplantation studies. Statistical Methods in Medical Research 11:117-139 · Zbl 1121.62623 · doi:10.1191/0962280202sm277ra
[19] Kvist K, Andersen PK, Angst J, Kessing LV (2010) Event dependent sampling of recurrent events. Lifetime Data Analysis 16:580-598 · Zbl 1322.62315 · doi:10.1007/s10985-010-9172-y
[20] Lin H, Scharfstein DO, Rosenheck RA (2004) Analysis of longitudinal data with irregular, outcome-dependent follow-up. Journal of the Royal Statistical Society, Series B 66:791-813 · Zbl 1046.62118 · doi:10.1111/j.1467-9868.2004.b5543.x
[21] Mandel M, Betensky RA (2008) Estimating time-to-event from longitudinal ordinal data using random effects Markov models: application to multiple sclerosis progression. Biostatistics 9:750-764 · Zbl 1437.62554 · doi:10.1093/biostatistics/kxn008
[22] Mehtala J, Auranen K, Kulathinal S (2011) Optimal designs for epidemiologic longitudinal studies with binary outcomes. Statistical methods in medical research. doi:10.1177/0962280211430663 · Zbl 1210.62115
[23] Moler C, Van Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45:3-49 · Zbl 1030.65029 · doi:10.1137/S00361445024180
[24] O’Keeffe AG, Tom BDM, Farewell VT (2011) A case-study in the clinical epidemiology of Psoriatic arthritis: Multistate models and causal arguments. Journal of the Royal Statistical Society, Series C 60:675-699 · doi:10.1111/j.1467-9876.2011.00767.x
[25] Raboud J, Loutfy MR, Su D, Bayoumi AM, Klein MB, Cooper C, Machouf N, Rouke S, Walmsley S, Rachlis A, Harrigan R, Smieja M, Tsoukas C, Montaner JS, Hogg RS (2010) Regional differences in rates of HIV-1 viral load monitoring in Canada: Insights and implications for antiretroviral care in high income countries. BMC Infectious Diseases 10:40 · doi:10.1186/1471-2334-10-40
[26] Satten GA, Sternberg MR (1999) Fitting semi-Markov models to interval-censored data with unknown initiation times. Biometrics 55:507-513 · Zbl 1059.62706 · doi:10.1111/j.0006-341X.1999.00507.x
[27] Titman AC (2009) Computation of the asymptotic null distribution of goodness-of-fit tests for multi-state models. Lifetime Data Analysis 15:519-533 · Zbl 1322.62078 · doi:10.1007/s10985-009-9133-5
[28] Titman AC, Sharples LD (2010a) Model diagnostics for multi-state models. Statistical Methods in Medical Research 19:621-651 · doi:10.1177/0962280209105541
[29] Titman AC, Sharples LD (2010b) Semi-Markov models with phase-type sojourn distributions. Biometrics 66:742-752 · Zbl 1203.62203 · doi:10.1111/j.1541-0420.2009.01339.x
[30] Titman AC (2011) Flexible nonhomogeneous Markov models for panel observed data. Biometrics 67:780-787 · Zbl 1226.62072 · doi:10.1111/j.1541-0420.2010.01550.x
[31] White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1-26 · Zbl 0478.62088 · doi:10.2307/1912526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.