×

Note on the efficiency of some iterative methods for solving nonlinear equations. (English) Zbl 1328.65119

Summary: The efficiency of algorithms for solving nonlinear equations is a measure of comparison between different iterative methods. In the case of scalar equations two parameters are considered as it is well-known, but frequently in recent literature inaccurate generalizations combining these parameters are used when solving systems of nonlinear equations. Our goal in this paper is to clarify the concept of the efficiency in the multi-dimensional case. To do it we present a detailed definition of the computational efficiency. The relation between the efficiency parameters in scalar and vectorial cases is analyzed in detail and tested in two numerical examples.

MSC:

65H10 Numerical computation of solutions to systems of equations

Software:

MPFR
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Amat, S., Busquier, S., Grau, A., Grau-Sánchez, M.: Maximum efficiency for a family of Newton-like methods with frozen derivatives and some applications. Appl. Math. Comput. 219, 7954-7963 (2013) · Zbl 1288.65069 · doi:10.1016/j.amc.2013.01.047
[2] Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On a novel fourth-order algorithm for solving systems of nonlinear equations. J. Appl. Math. Article ID 165452, 12 (2012) · Zbl 1268.65072
[3] Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algorithms 55, 87-99 (2010) · Zbl 1251.65074 · doi:10.1007/s11075-009-9359-z
[4] Cordero, A., Torregrosa, J.R.: On interpolation variants of Newton’s method for functions of several variables. J. Comput. Appl. Math. 234, 34-43 (2010) · Zbl 1201.65077 · doi:10.1016/j.cam.2009.12.002
[5] Ezquerro, J.A., Grau, A., Grau-Sánchez, M., Hernández, M.A., Noguera, M.: Analysing the efficiency of some modifications of the secant method. Comput. Math. Appl. 64, 42066-42073 (2012) · Zbl 1268.65073 · doi:10.1016/j.camwa.2012.03.105
[6] Ezquerro, J.A., Grau, A., Grau-Sánchez, M., Hernández, M.A.: On the efficiency of two variants of Kurchatov’s method for solving nonlinear systems. Numer. Algorithms 64, 685-698 (2013) · Zbl 1330.65076 · doi:10.1007/s11075-012-9685-4
[7] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (2007) · Zbl 1365.65302 · doi:10.1145/1236463.1236468
[8] Grau-Sánchez, M., Grau, A., Noguera, M.: Frozen divided difference scheme for solving systems of nonlinear equations. J. Comput. Appl. Math. 235, 1739-1743 (2011) · Zbl 1204.65051 · doi:10.1016/j.cam.2010.09.019
[9] Grau-Sánchez, M., Grau, A., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259-1266 (2011) · Zbl 1231.65090 · doi:10.1016/j.cam.2011.08.008
[10] Grau-Sánchez, M., Noguera, M.: A technique to choose the most efficient method between secant method and some variants. Appl. Math. Comput. 218, 6415-6426 (2012) · Zbl 1277.65032 · doi:10.1016/j.amc.2011.12.011
[11] Grau-Sánchez, M., Grau, A., Noguera, M., Herrero, J.R.: A study on new computational local orders of convergence. Appl. Math. Lett. 25, 2023-2030 (2012) · Zbl 1252.65091 · doi:10.1016/j.aml.2012.04.012
[12] Grau-Sánchez, M., Noguera, M., Amat, S.: On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J. Comp. Appl. Math. 237, 363-372 (2013) · Zbl 1308.65074 · doi:10.1016/j.cam.2012.06.005
[13] Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. (ACM) 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[14] Montazeri, H., Soleyman, F., Shateyi, S., Motsa, S.: On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. Article ID 751975, 15 (2012) · Zbl 1268.65075
[15] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
[16] Ostrowski, A.M.: Solutions of Equations and System of Equations. Academic Press, New York (1960) · Zbl 0115.11201
[17] Potra, F.A., Pták, V.: Nondiscrete Induction and Iterative Methods. Pitman Publishing Limited, London (1984) · Zbl 0549.41001
[18] Ren, H., Wu, Q., Bi, W.: A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 209, 206-210 (2009) · Zbl 1166.65338 · doi:10.1016/j.amc.2008.12.039
[19] Sharma, J.R., Arora, H.: On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497-506 (2013) · Zbl 1329.65106 · doi:10.1016/j.amc.2013.07.066
[20] Sidi, A.: Review of two vector extrapolation methods of polynomial type with applications to large-scale problems. J. Comput. Sci. 3, 92-101 (2012) · doi:10.1016/j.jocs.2011.01.005
[21] The GNU MPFR library 3.1.0. http://www.mpfr.org
[22] Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964) · Zbl 0121.11204
[23] Ullah, M.Z., Soleymani, F., Al-Fhaid, A.S.: Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear Numer. Algorithms (2013). doi:10.1007/s11075-013-9784-x · Zbl 1316.65053
[24] Wall, D.D.: The order of an iteration formula. Math. Tables Aids Comput. 10, 167-168 (1956) · Zbl 0070.12505
[25] Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592-9597 (2011) · Zbl 1227.65044 · doi:10.1016/j.amc.2011.04.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.