×

Algorithms for parallelizing a mathematical model of forest fires on supercomputers and theoretical estimates for the efficiency of parallel programs. (English. Russian original) Zbl 1327.68326

Cybern. Syst. Anal. 51, No. 3, 471-480 (2015); translation from Kibern. Sist. Anal. 2015, No. 3, 167-177 (2015).
Summary: The author develops algorithms of parallel implementation of a mathematical model of forest fires to model processes of their occurrence, development, and propagation taking into account physical and chemical processes. Approaches to parallel implementation and schemes of decomposition of solution domains for two-dimensional cases are proposed. Coarse-grained parallelization methods are proposed to be used in the SPMD model of calculations. Formulas are given that make it possible to theoretically estimate the efficiency of parallel programs.

MSC:

68W10 Parallel algorithms in computer science
93A30 Mathematical modelling of systems (MSC2010)

Software:

FARSITE; FlamMap
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. M. Grishin, Mathematical Modeling of Forest Fires and New Methods for Fighting Them [in Russian], Science, Novosibirsk (1992).
[2] A. M. Grishin, Physics of Forest Fires [in Russian], Publ. House of the Tomsk State Univ., Tomsk (1994).
[3] Mathematical Modeling of Forest Fires and New Methods of Fighting Them [in Russian], Publ. House of the Tomsk State Univ., Tomsk (1997).
[4] A. M. Grishin, “A general mathematical model of forest fires and its application to the protection and safeguarding of forests,” in: Conjugate Problems of Mechanics and Ecology: Selected Reports of Intern. Conf., Publ. House of the Tomsk State Univ., Tomsk (2000), pp. 88-137.
[5] A. M. Grishin, Modeling and Prediction of Catastrophes [in Russian], Publ. House of the Tomsk State Univ., Tomsk (2002).
[6] J. Jarratano and G. Riley, Expert Systems: Principles and Programming [Russian translation], 4th Edition, Williams, Moscow (2007).
[7] A. V. Bogdanov, V. V. Korkhov, V. V. Mareev, and E. N. Stankova, Architectures and Topologies of Multiprocessor Computing Systems: A Textbook [in Russian], The Internet University of Information Technologies INTUIT.RU, Moscow (2004).
[8] V. A. Vshivkov, M. A. Kraeva, and V. E. Malyshkin, “Parallel implementations of the particle-in-cell method,” Programming, No. 2, 39-51 (1997). · Zbl 0925.76428
[9] O. L. Bandman, “Fine-grain parallelism in computer engineering,” Programming, No. 4, 5-20 (2001).
[10] V. V. Falfushinsky, “Parallel processing of multicomponent seismic data.” Cybernetics and Systems Analysis, 47, No. 2, 330-334 (2011). · doi:10.1007/s10559-011-9315-5
[11] P. I. Andon, A. Yu. Doroshenko, and K. A. Zhereb, “Programming high-performance parallel computations: Formal models and graphics processing units,” Cybernetics and Systems Analysis, 47, No. 4, 659-668 (2011). · doi:10.1007/s10559-011-9346-y
[12] I. V. Sergienko, I. N. Molchanov, and A. N. Khimich, “Intelligent technologies of high-performance computing,” Cybernetics and Systems Analysis, 46, No. 5, 833-844 (2010). · Zbl 06361628 · doi:10.1007/s10559-010-9265-3
[13] M. M. Glybovets, S. S. Gorohovskiy, and M. S. Stukalo, “Extension of Scala language by distributed and parallel computing tools with Linda coordination system,” Cybernetics and Systems Analysis, 46, No. 4, 624-629 (2010). · doi:10.1007/s10559-010-9238-6
[14] G. Sanjuan, C. Brun, T. Margalef, and A. Cortes, “Wind field uncertainty in forest fire propagation prediction,” Procedia Computer Science, 29, 1535-1545 (2014). · doi:10.1016/j.procs.2014.05.139
[15] J. M. Forthofer, K. Shannon, and B. W. Butler, “Simulating diurnally driven slope winds with WindNinja,” in: Proc. 8th Symp. on Fire and Forest Meteorological Society, Kalispell, Montana (2009).
[16] J. M. Forthofer, K. Shannon, and B. W. Butler, “Initialization of high resolution surface wind simulations using National Weather Service (NWS) gridded data,” in: Proc. 3rd Fire Behavior and Fuels Conference, Washington (2010), p. 5.
[17] M. A. Finney, “FARSITE, Fire area simulator-model development and evaluation,” Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (1998).
[18] C. Brun, T. Artes, T. Margafel, and A. Cortes, “Coupling wind dynamics into DDDAS forest fire propagation prediction system,” Procedia Computer Science, 9, 1110-1118 (2012). · doi:10.1016/j.procs.2012.04.120
[19] R. C. Rothermel, “A mathematical model for predicting fire spread in wildland fuels,” USDA For. Serv. Res. Paper INT-115, Washington, DC (1972). · Zbl 1137.80323
[20] Sero-Guillaume, S. Ramezani, J. Margerit, and D. Calogine, “On large scale forest fires propagation models,” International Journal of Thermal Sciences, 47, 680-694 (2008). · doi:10.1016/j.ijthermalsci.2007.06.016
[21] K. Kalabokidis, N. Athanasis, F. Gagliardi, F. Karayiannis, P. Palaiologou, S. Parastatidis, and Ch. Vasilakos, “Virtual fire: A web-based GIS platform for forest fire control,” Ecological Informatics, 16, 62-69 (2013). · doi:10.1016/j.ecoinf.2013.04.007
[22] P. Palaiologou, K. Kalabokidis, and P. Kyriakidis, “Forest mapping by geoinformatics for landscape fire behaviour modeling in coastal forests,” International Journal of Remote Sensing, 34, 4466-4490 (2013). · doi:10.1080/01431161.2013.779399
[23] D. Morvan, “Numerical study of the effect of fuel moisture content (FMC) upon the propagation of a surface fire on a flat terrain,” Fire Safety Journal, 58, 121-131 (2013) · doi:10.1016/j.firesaf.2013.01.010
[24] J. Glasa and L. Halada, “On elliptic model for forest fire spread modeling and simulation,” Mathematics and Computers in Simulation, 78, 76-88 (2008). · Zbl 1137.92029 · doi:10.1016/j.matcom.2007.06.001
[25] A. Hernández Encinas, L. Hernández Encinas, S. Hoya White, A. Martín del Rey., and G. Rodríguez Sánchez, “Simulation of forest fire front using cellular automata,” Advances in Engineering Software, 38, No. 6, 372-378 (2007). · Zbl 1137.80323 · doi:10.1016/j.advengsoft.2006.09.002
[26] I. Karafyllidis and A. Thanailakis, “A model for predicting forest fire spreading using cellular automata,” Ecological modeling, 99, 87-97 (1997). · doi:10.1016/S0304-3800(96)01942-4
[27] T. Artes, A. Cencerrado, A. Cortes, and T. Margafel, “Relieving the effect of uncertainty in forest fire spread prediction by hybrid MPI-OpenMP parallel strategies,” Procedia Computer Science, 18, 2278-2287 (2013). · doi:10.1016/j.procs.2013.05.399
[28] F. A. Sousa, R. J. N. dos Reis, and J. C. F. Pereira, “Simulation of surface fire fronts using fireLib and GPUs,” Environmental modeling & Software, 38, 167-177 (2012). · doi:10.1016/j.envsoft.2012.06.006
[29] A. M. Grishin and N. V. Baranovskij, “Comparative analysis of simple models of drying of the forest combustibles, including the data of experiments and natural observations,” Journal of Engineering Physics and Thermophysics, 76, No. 5, 166-169 (2003).
[30] G. V. Kuznetsov and N. V. Baranovskiy, “Focused Sun’s rays and forest fire danger: New concept,” in: Proc. SPIE (2013), Paper 889011, doi:10.1117/12.2033929. · Zbl 1137.80323
[31] A. M. Grishin, V. N. Bertsun, and V. I. Zinchenko, Iterative Interpolation Method and Its Applications [in Russian], Publ. House of the Tomsk State Univ., Tomsk (1981). · Zbl 0518.65086
[32] A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems of Mathematical Physics [in Russian], Nauka, Moscow (2001). · Zbl 0985.65107
[33] V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, The Use of the Splitting Method in Aerodynamics Problems [in Russian], Nauka, Novosibirsk (1990).
[34] D. E. Khmelnov, “Improved algorithms for solving difference and <Emphasis Type=”Italic“>q-difference equations,” Programming, No. 2, 70-78 (2000).
[35] A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).
[36] K. Ngiamsoongnirn, E. Juntasaro, V. Juntasaro, and P. Uthayopas, “A parallel semi-coarsening multigrid algorithm for solving the Reynolds-averaged Navier-Stokes equations,” in: Proc. Intern. Conf. HPCAsia-04; IEEE Computer Society (2004), pp. 258-266.
[37] A. Clematis, D. D’Agostino, and V. Gianuzzi, “Load balancing and computing strategies in pipeline optimization for parallel visualization of 3D irregular meshes,” EuroPVM/MPI; Lecture Notes in Computer Science, 3666, 457-466 (2005).
[38] V. D. Korneyev, Parallel Programming in MPI [in Russian], Publ. House SB RAS, Novosibirsk (2000).
[39] V. P. Il’in, “Strategies of parallelization in mathematical modeling,” Programming, No. 1, 41-46 (1999).
[40] A. I. Avetisyan, S. S. Gaisaryan, and O. I. Samovarov, “Possibilities of optimal execution of parallel programs containing simple and iterated loops on heterogeneous parallel computational systems with distributed memory,” Programming, No. 1, 38-54 (2002). · Zbl 1037.68041
[41] N. V. Baranovskiy, “Landscape parallelization and of forest fire danger prediction,” Siberian Journal of Numerical Mathematics, 10, No. 2, 141-152 (2007). · Zbl 1212.65539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.