×

Sub-crustal stress determined using gravity and crust structure models. (English) Zbl 1330.86035

Summary: The sub-crustal stress induced by mantle convection has been traditionally computed using the Runcorn formulae of solving the Navier-Stokes problem. The main disadvantage of this method is a limited spectral resolution (up to degree 25 of spherical harmonics) due to a divergence of the spherical harmonic expression. To improve the spectral resolution, we propose a new method of computing the horizontal components of the sub-crustal stress based on utilising the stress function with a numerical differentiation. According to the proposed method, the stress function is functionally related to the gravity and crust structure models expressed in terms of spherical harmonics, instead of directly relating the stress components with partial derivatives of these spherical harmonics. The stress components are then computed from the stress function by applying a numerical differentiation. This modification increases the degree-dependent convergence domain of the asymptotically convergent series and consequently allows computing the stress components to a higher spectral resolution, which is compatible with currently available global crustal models. We further utilise the solution to the Vening Meinesz-Moritz inverse problem of isostasy in definition of the stress function. This definition facilitates a variable crustal thickness instead of assuming only a constant value adopted in the Runcorn formulae. The crustal thickness and sub-crustal stress are then determined directly from gravity data and a crustal structure model. We apply this numerical approach to compute the sub-crustal stress globally. Regional results are also presented and discussed over study areas of oceanic subduction zones, convergent continent-to-continent collision zones and hotspots. We demonstrate that the largest (in magnitude) sub-crustal stress occurs mainly along seismically active convergent tectonic plate boundaries.

MSC:

86A60 Geological problems
86-08 Computational methods for problems pertaining to geophysics

Software:

CRUST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adam, C., Vidal, V.: Mantle flow drives the subsidence of oceanic plates. Sci. 328, 83-85 (2010) · doi:10.1126/science.1185906
[2] Airy, G.B.: On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys, Trans. Roy. Soc. (London), ser. B, vol. 145 (1855)
[3] Allen, R.M., Nolet, G., Morgan, W.J.: The thin hot plume beneath Iceland. Geophys. J. Int. 137(1), 51-63 (1999) · doi:10.1046/j.1365-246x.1999.00753.x
[4] Anderson, D.L., O’Connel, R.: Viscosity of the earth. Geophys. J.R. Astr. Soc. 14, 287-295 (1967) · doi:10.1111/j.1365-246X.1967.tb06245.x
[5] Beichner Robert, J., Jewett, J.W., Raymond, A.: Serway. Physics for Scientists and Engineers, New York: Saunders College (2000)
[6] Bagherbandi, M.: An isostatic Earth crustal model and its application, doctoral dissertation in geodesy. Royal Institute of Technology (KTH), Stockholm, Sweden (2011)
[7] Bilham, R., Larson, K., Freymueller, J.: GPS measurements of present-day convergence across the nepal himalaya. Nature 386, 61-64 (1997) · doi:10.1038/386061a0
[8] Breitsprecher, K., Thorkelson, D.J.: Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath patagonia and the antarctic Peninsula. Tectonophys. 464, 10-20 (2009). doi:10.1016/j.tecto.2008.02.013 · doi:10.1016/j.tecto.2008.02.013.
[9] Cande, S.C., Leslie, S.D., Parra, J.C., Hobart, M.: Interaction between the chile ridge and the chile trench: geophysical and geothermal evidence. J. Geophys. Res. 92, 495-520 (1987). doi:10.1029/JB092iB01p00495 · doi:10.1029/JB092iB01p00495.
[10] Cahill, T., Isacks, B.: Seismicity and shape of the subducted Nazca plate. J. Geophys. Res. 97(12) (1992)
[11] Conrad, C., Lithgow-Bertelloni, C., Louden, K.: Iceland, the farallon slab, and dynamic topography of the north atlantic. Geology 32, 177-180 (2004) · doi:10.1130/G20137.1
[12] Currie, I.G.: Fundamental mechanics of fluids, McGraw-Hill (1974) · Zbl 0353.76002
[13] Dewey, J.F., Cande, S., Pitman, W.C.: Tectonic evolution of the Indian/Eurasia collision zone. Eclogae Geologicae Helvetiae 82 3, 717-734 (1989)
[14] Dziewonski, A.M., Anderson, D.L.: Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297-356 (1981) · doi:10.1016/0031-9201(81)90046-7
[15] Eagles, G., Gohl, K., Larter, R.D.: Animated tectonic reconstruction of the Southern Pacific and alkaline volcanism at its convergent margins since Eocene times. Tectonophys. 464, 21-29 (2009). doi:10.1016/j.tecto.2007.10.005. · doi:10.1016/j.tecto.2007.10.005
[16] Engdahl, E.R., Sleep, N.H., Lin, M.-T.: Plate effects in north pacific subduction zones. Tectonophysics 37(1-3,5), 95-116 (1977) · doi:10.1016/0040-1951(77)90041-5
[17] Eshagh: From satellite gradiometry data to sub-crustal stress due to mantle convection. Pure Appl. Geophys. 171, 2391-2406 (2014) · doi:10.1007/s00024-014-0847-2
[18] Foulger, G.R., Anderson, D.L.: A cool model for the Iceland hotspot. J. Volcano. Geother. Res. 141(1-2), 1-22 (2005) · doi:10.1016/j.jvolgeores.2004.10.007
[19] Gurnis, M., Mitrovica, J., Ritsema, J., van Heijst, H.-J.: Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African. Superplume. Geochem. Geophys. Geosyst. 1, 1020 (2000)
[20] Hager, B., Clayton, C., Richards, M., Comer, R., Dziewonski, A.: Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541-545 (1985) · doi:10.1038/313541a0
[21] Hasegawa, A., Umino, N., Takagi, A.: Double-planed structure of the deep seismic zone, in the north-eastern Japan arc:. Tectonophys. 47, 43-58 (1978) · doi:10.1016/0040-1951(78)90150-6
[22] Haskell, N.A.: The motion of a fluid under the surface load. Phys. 6, 265-269 (1935) · JFM 61.1539.02 · doi:10.1063/1.1745329
[23] Hayford J.F.: The figure of the earth and isostasy from measurements in the United States. USCGS. (1909)
[24] Hayford, J.F., Bowie, W.: The effect of topography and isostatic compensation upon the intensity of gravity USCGS, Spec. Publ., No. 10. (1912) · Zbl 0002.31603
[25] Heiskanen, W., Moritz, H.: Physical geodesy. W.H. Freeman and company, San Francisco and London (1967)
[26] Heiskanen, W.A., Vening Meinesz, F.A.: The earth and its gravity field. McGraw-Hill Book Company Inc (1958)
[27] Hess, H.H.: History of ocean basins. In: Engel, A.E.J., Harold, L.J., Leonard, B.F. (eds.) Petrologic studies: a volume in honor of Buddington, A.F. Boulder, pp. 599-620. CO: Geological Society of America (1962)
[28] Hirahara, K.: Three-dimensional seismic structure beneath southwest Japan: the subducting Philippine Sea Plate. Tectonophys. 79(1-2), 1-44 (1981) · doi:10.1016/0040-1951(81)90231-6
[29] Hinze, W.J.: Bouguer reduction density, why 2.67. Geophys. 68(5), 1559-1560 (2003) · doi:10.1190/1.1620629
[30] James D.: Subduction of the Nazca plate beneath Central Peru. Geology 6(3), 174-178 (1978) · doi:10.1130/0091-7613(1978)6<174:SOTNPB>2.0.CO;2
[31] Kao, H., Gao, R., Rau, R.-J., Shi, D., Chen, R.-Y., Guan, Y., Wu, F.T.: Seismic image of the Tarim basin and its collision with Tibet. Geology 29, 575-578 (2001) · doi:10.1130/0091-7613(2001)029<0575:SIOTTB>2.0.CO;2
[32] Laske, G., Masters, G., Ma, Z., Pasyanos, M.E.: CRUST1.0: an updated global model of Earth’s crust. Geophys Res Abs 14, EGU2012-3743-1. EGU General Assembly (2012)
[33] Li, Ch, van der Hilst, R.D., Meltzer, A.S., Engdahl, E.R.: Subduction of the indian lithosphere beneath the tibetan plateau and burma. Earth Planet. Scie. Lett. 274, 157-168 (2008) · doi:10.1016/j.epsl.2008.07.016
[34] Liu, H.S.: Convection pattern and stress system under the african plate. Phys. Earth. Planet. Int. 15, 60-68 (1977) · doi:10.1016/0031-9201(77)90010-3
[35] Liu, H.S.: Mantle convection pattern and subcrustal stress under asia. Phys. Earth Planet. Int. 16, 247-256 (1978) · doi:10.1016/0031-9201(78)90018-3
[36] Liu, H.S.: Convection-generated stress concentration and seismogenic models of the tangshan earthquake,. Phys. Earth Planet. Int. 19, 307-318 (1979) · doi:10.1016/0031-9201(79)90003-7
[37] Liu, H.S.: Convection generated stress field and intra-plate volcanism. Tectonophys. 65, 225-244 (1980) · doi:10.1016/0040-1951(80)90076-1
[38] Matsuzawa, T., Kono, T., Hasegawa, A., Takagi, A.: Subducting plate boundary beneath the northeastern Japan arc estimated from SP converted waves. Tectonophys. 181(1-4, 10), 123-133 (1990) · doi:10.1016/0040-1951(90)90012-W
[39] Martinec, Z.: Green’s function solution to spherical gradiometric boundary-value problems. J. Geod. 77, 41-49 (2003) · Zbl 1055.86003 · doi:10.1007/s00190-002-0288-z
[40] Mayer-Guerr, T., Rieser, D., Höck, E., Brockmann, J.M., Schuh, W.-D., Krasbutter, I., Kusche, J., Maier, A., Krauss, S., Hausleitner, W., Baur, O., Jäggi, A., Meyer, U., Prange, L., Pail, R., Fecher, T., Gruber, T.: The new combined satellite only model GOCO03s: Abstract, GGHS2012, Venice (2012)
[41] Müller, R.D., Sdrolias M., Gaina C., Roest W.R.: Age spreading rates and spreading symmetry of the world’s ocean crust: Geochemistry Geophysics Geosystems, vol. 9, s. Q04006. (2008)
[42] Mitrovica, J.X., Forte, A.M.: Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observable. J. Geophys. Res. 102, 2751-2769 (1997) · doi:10.1029/96JB03175
[43] Molnar, P., Tapponnier, P.: Cenozoic tectonics of asia, effects of a continental collision. Sci. 189, 419-426 (1975) · doi:10.1126/science.189.4201.419
[44] Moritz, H.: The figure of the Earth Wichmann, H. Karlsruhe (1990)
[45] Moritz, H.: Geodetic reference system 1980. J. Geod. 74, 128-162 (2000) · doi:10.1007/s001900050278
[46] Neri, G., Orecchio, B., Totaro, C., Falcone, G., Presti, D.: Subduction beneath southern Italy close the ending: results from seismic tomography. Seismologic. Res. Lett. 80, 63-70 (2009) · doi:10.1785/gssrl.80.1.63
[47] Ni, J., Barazangi, M.: Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya. J. Geophys. Res. 89, 1147-1163 (1984) · doi:10.1029/JB089iB02p01147
[48] Ni, J.F., Guzman-Speziale, M., Bevis, M., Holt, W.E., Wallace, T.C., Seager, W.: Accretionary tectonics of Burma and the three-dimensional geometry of the Burma subduction zone. Geology 17, 68-71 (1989) · doi:10.1130/0091-7613(1989)017<0068:ATOBAT>2.3.CO;2
[49] Oldenburg, D.W.: The inversion and interpretation of gravity anomalies. Geophys. 39, 526-536 (1974) · doi:10.1190/1.1440444
[50] Owens, T.J., Zandt, G.: Implications of crustal property variations for models of tibetan plateau evolution. Nature 387, 37-43 (1997) · doi:10.1038/387037a0
[51] Parker, R.L.: The rapid calculation of potential anomalies. Geophys. J. R. Astr. Soc. 31, 447-455 (1972) · doi:10.1111/j.1365-246X.1973.tb06513.x
[52] Pavlis, N.K., Factor, J.K., Holmes, S.A.: Terrain-related gravimetric quantities computed for the nNext EGM. Presented at the 1st International symposium of the International gravity service 2006, August 28- September 1, Istanbul (2007)
[53] Peltier, W.R., Andrews, J.T.: Glacial-isostatic adjustment-I. The forward problem. Geophys. J. R. Astr. Soc. 46, 605-646 (1976) · doi:10.1111/j.1365-246X.1976.tb01251.x
[54] Pick, M.: The geoid and tectonic forces, In Geoid and its geophysical interpretations. In: Vanicek, P., Christou, N. (eds.) . CRC Press 386 p. (1994)
[55] Pick, M., Charvatova-Jakubkova, I.: Modification of the Runcorn’s equations on the convection flows, Stud. Geophys. Geod. 32, 47-53 (1988) · doi:10.1007/BF01629000
[56] Rai, S.S., Priestley, K., Gaur, V.K., Mitra, S., Singh, M.P., Searle, M.: Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys. Res. Lett. 33, L15308 (2006)
[57] Renard, V., Nakamura, K., Angelier, J., Azema, J., Bourgois, J., Deplus, Ch., Fujioka, K., Hamano, Y., Huchon, P., Kinoshita, H., Labaume, P., Ogawa, Y., Seno, T., Takeuchi, A., Tanahashi, M., Uchiyama, A., Vigneresse, J.-L.: Trench triple junction off central japan—preliminary results of french-japanese 1984 Kaiko cruise, Leg 2. Earth Planet. Sci. Lett. 83, 243-256 (1987) · doi:10.1016/0012-821X(87)90069-0
[58] Runcorn, S.K.: Satellite gravity measurements and laminar viscous flow model of the Earth mantle. J. Geophys. Res. 69(20), 4389-4394 (1964) · doi:10.1029/JZ069i020p04389
[59] Runcorn, S.K.: Flow in the mantle inferred from the low degree harmonics of the geopotential, Vol. 14, pp. 375-384 (1967)
[60] Schiffer, Ch., Balling, N., Jacobsen, B.H., Stephenson, R.A., Nielsen, S.B.: Seismological evidence for a fossil subduction zone in the East Greenland Caledonides Geology. doi:10.1130/G35244.1 (2014)
[61] Sjöberg, L.E.: Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int. 179, 1527-1536 (2009) · doi:10.1111/j.1365-246X.2009.04397.x
[62] Sjöberg, L.E.: On the isotactic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys. J. Int. (2013). doi:10.1093/gji/ggt008
[63] Steinberger, B.: Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys. Earth Planet. Inter. 164, 2-20 (2007) · doi:10.1016/j.pepi.2007.04.021
[64] Tapponnier, P., Peltzer, G., Armijo, R., Le Dain, A., Cobbold, P.: Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine, Vol. 10, pp. 611-616 (1982)
[65] Vening Meinesz, F.A.: Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la. Pesanteur. Bull. Geod. 29, 33-51 (1931) · Zbl 0002.31603 · doi:10.1007/BF03030038
[66] Vine, F.J., Matthews, D.H.: Magnetic anomalies over oceanic ridges. Nature 199 (4897), 947-949 (1963) · doi:10.1038/199947a0
[67] Walcott, R.I.: Flexural rigidity, thickness, and viscosity of the lithosphere. J. Geophys. Res. 75, 3941-3954 (1970) · doi:10.1029/JB075i020p03941
[68] Walcott, R.I.: Late quaternary vertical movements in eastern North America: quantitative evidence of glacio-isostatic rebound. Rev. Geophys. Space Phys. 10, 849-884 (1972) · doi:10.1029/RG010i004p00849
[69] Walcott, R.I.: Structure of the earth from glacio-isostatic rebound. Ann. Rev. Earth Planet Sci. 1, 15-37 (1973) · doi:10.1146/annurev.ea.01.050173.000311
[70] Watts, A.B.: Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge (2001)
[71] Willett, S.D., Beaumont, C.: Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature 369, 642-645 (1994) · doi:10.1038/369642a0
[72] Wilson, J.T.: A possible origin of the Hawaiian Islands. Canadian J. Phys. 41, 863-870 (1963) · doi:10.1139/p63-094
[73] Winterbourne, J., Crossby, A., White N.: Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented atlantic margins. Earth Planet. Sci. Lett. 287, 137-151 (2009) · doi:10.1016/j.epsl.2009.08.019
[74] Wittlinger, G., Vergne, J., Tapponnier, P., Farra, V., Poupinet, G., Jiang, M., Su, H., Herquel, G., Paul, A.: Teleseismic imaging of subducting lithosphere and Moho offsets beneath western tibet, Vol. 221, pp. 117-130 (2004)
[75] Wu, Q.J., Zeng, R.S., Zhao, W.J.: Dipping structure of upper mantle and continent-continent collision in Himalyas-Tibet Plateau. Sci. China (Series D) 34(10), 919-925 (2004)
[76] Xu, Z.Q., Jiang, M., Yang, J.S., Xue, G.Q., Su, H.P., Li, H.B., Cui, J.W., Wu, C.L., Liang, F.H.: Mantle structure of Qinghai-Tibet plateau: mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci. Front. 11(4), 329-343 (2004)
[77] Zeng, R.S., Teng, J.W., Li, Y.K., Klemperer, S., Yang, L.Q.: Crustal velocity structure and eastward escaping of crustal material in the southern Tibet. Sci. China. 32(10), 793-798 (2002)
[78] Zhao, D., Horiuchi, S., Hasegawa, A.: 3-D seismic velocity structure of the crust and the uppermost mantle in the northeastern Japan Arc. Tectonophys. 181(1-4), 135-149 (1990) · doi:10.1016/0040-1951(90)90013-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.