×

Adaptive multinomial matrix completion. (English) Zbl 1329.62304

Summary: The task of estimating a matrix given a sample of observed entries is known as the matrix completion problem. Most works on matrix completion have focused on recovering an unknown real-valued low-rank matrix from a random sample of its entries. Here, we investigate the case of highly quantized observations when the measurements can take only a small number of values. These quantized outputs are generated according to a probability distribution parametrized by the unknown matrix of interest. This model corresponds, for example, to ratings in recommender systems or labels in multi-class classification. We consider a general, non-uniform, sampling scheme and give theoretical guarantees on the performance of a constrained, nuclear norm penalized maximum likelihood estimator. One important advantage of this estimator is that it does not require knowledge of the rank or an upper bound on the nuclear norm of the unknown matrix and, thus, it is adaptive. We provide lower bounds showing that our estimator is minimax optimal. An efficient algorithm based on lifted coordinate gradient descent is proposed to compute the estimator. A limited Monte Carlo experiment, using both simulated and real data is provided to support our claims.

MSC:

62J02 General nonlinear regression
62J99 Linear inference, regression
62H12 Estimation in multivariate analysis
60B20 Random matrices (probabilistic aspects)

Software:

softImpute
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] R. Bhatia., Matrix analysis , volume 169 of Graduate Texts in Mathematics . Springer-Verlag, New York, 1997.
[2] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey., Knowledge-Based Systems , 46(0):109 - 132, 2013.
[3] J-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion., SIAM Journal on Optimization , 20(4) :1956-1982, 2010. · Zbl 1201.90155 · doi:10.1137/080738970
[4] T. T. Cai and W-X. Zhou. Matrix completion via max-norm constrained optimization., CoRR , abs /1303.0341, 2013. · Zbl 1342.62091
[5] T. T. Cai and W-X. Zhou. A max-norm constrained minimization approach to 1-bit matrix completion., J. Mach. Learn. Res. , 14 :3619-3647, 2013. · Zbl 1318.62172
[6] E. J. Candès and Y. Plan. Matrix completion with noise., Proceedings of the IEEE , 98(6):925-936, 2010.
[7] M. A. Davenport, Y. Plan, E. van den Berg, and M. Wootters. 1-bit matrix completion., Information and Inference , 3(3):189-223, 2014. · Zbl 1309.62124 · doi:10.1093/imaiai/iau006
[8] M. Dudík, Z. Harchaoui, and J. Malick. Lifted coordinate descent for learning with trace-norm regularization. In, AISTATS , 2012.
[9] M. Fazel., Matrix rank minimization with applications . PhD thesis, Stanford University, 2002.
[10] R. Foygel, R. Salakhutdinov, O. Shamir, and N. Srebro. Learning with the weighted trace-norm under arbitrary sampling distributions. In, NIPS , pages 2133-2141, 2011.
[11] G. H. Golub and C. F. van Loan., Matrix computations . Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013. · Zbl 1268.65037
[12] D. Gross. Recovering low-rank matrices from few coefficients in any basis., Information Theory, IEEE Transactions on , 57(3) :1548-1566, 2011. · Zbl 1366.94103 · doi:10.1109/TIT.2011.2104999
[13] S. Gunasekar, P. Ravikumar, and J. Ghosh. Exponential family matrix completion under structural constraints., ICML , 2014.
[14] J. Hui, L. Chaoqiang, S. Zuowei, and X. Yuhong. Robust video denoising using low rank matrix completion., CVPR , 0 :1791-1798, 2010.
[15] L. Ji, P. Musialski, P. Wonka, and Y. Jieping. Tensor completion for estimating missing values in visual data., IEEE Trans. Pattern Anal. Mach. Intell. , 35(1):208-220, 2013.
[16] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries., J. Mach. Learn. Res. , 11 :2057-2078, 2010. · Zbl 1242.62069
[17] O. Klopp. Rank penalized estimators for high-dimensional matrices., Electron. J. Stat. , 5 :1161-1183, 2011. · Zbl 1274.62489 · doi:10.1214/11-EJS637
[18] O. Klopp. Noisy low-rank matrix completion with general sampling distribution., Bernoulli , 2(1):282-303, 02 2014. · Zbl 1400.62115 · doi:10.3150/12-BEJ486
[19] V. Koltchinskii, A. B. Tsybakov, and K. Lounici. Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion., Ann. Statist. , 39(5) :2302-2329, 2011. · Zbl 1231.62097 · doi:10.1214/11-AOS894
[20] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems., Computer , 42(8):30-37, 2009.
[21] M. Ledoux and M. Talagrand., Probability in Banach spaces , volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] . Springer-Verlag, Berlin, 1991. Isoperimetry and processes. · Zbl 0748.60004
[22] P. Massart. About the constants in Talagrand’s concentration inequalities for empirical processes., Ann. Probab. , 28(2):863-884, 2000. · Zbl 1140.60310 · doi:10.1214/aop/1019160263
[23] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices., J. Mach. Learn. Res. , 11 :2287-2322, 2010. · Zbl 1242.68237
[24] S. Negahban and M. J. Wainwright. Restricted strong convexity and weighted matrix completion: optimal bounds with noise., J. Mach. Learn. Res. , 13 :1665-1697, 2012. · Zbl 1436.62204
[25] J. A. Tropp. User-friendly tail bounds for sums of random matrices., Found. Comput. Math. , 12(4):389-434, 2012. · Zbl 1259.60008 · doi:10.1007/s10208-011-9099-z
[26] A. B. Tsybakov., Introduction to nonparametric estimation . Springer Series in Statistics. Springer, New York, 2009.
[27] H. Xu, W. Jiasong, W. Lu, C. Yang, L. Senhadji, and H. Shu. Linear total variation approximate regularized nuclear norm optimization for matrix completion., Abstr. Appl. Anal. , pages Art. ID 765782, 8, 2014.
[28] Y. Yang, J. Ma, and S. Osher. Seismic data reconstruction via matrix completion., Inverse Probl. Imaging , 7(4) :1379-1392, 2013. · Zbl 1292.15017 · doi:10.3934/ipi.2013.7.1379
[29] Y. Koren and J. Sill. Ordrec: An ordinal model for predicting personalized item rating distributions. In, Proceedings of the Fifth ACM Conference on Recommender Systems , RecSys ’11, pages 117-124, New York, NY, USA, 2011. ACM.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.