×

Evaluating manifest monotonicity using Bayes factors. (English) Zbl 1329.62467

Summary: The assumption of latent monotonicity in item response theory models for dichotomous data cannot be evaluated directly, but observable consequences such as manifest monotonicity facilitate the assessment of latent monotonicity in real data. Standard methods for evaluating manifest monotonicity typically produce a test statistic that is geared toward falsification, which can only provide indirect support in favor of manifest monotonicity. We propose the use of Bayes factors to quantify the degree of support available in the data in favor of manifest monotonicity or against manifest monotonicity. Through the use of informative hypotheses, this procedure can also be used to determine the support for manifest monotonicity over substantively or statistically relevant alternatives to manifest monotonicity, rendering the procedure highly flexible. The performance of the procedure is evaluated using a simulation study, and the application of the procedure is illustrated using empirical data.

MSC:

62P15 Applications of statistics to psychology
62F15 Bayesian inference

Software:

BayesDA; MSP5; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrahamowicz, M., & Ramsay, J. O. (1992). Multicategorical spline model for item response theory. Psychometrika, 57, 5-27. · doi:10.1007/BF02294656
[2] Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). London, UK: Chapman & Hall. · Zbl 1039.62018
[3] Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741. · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[4] Grayson, D. A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383-392. · Zbl 0718.62147
[5] Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston, MA: Kluwer Nijhof. · Zbl 1306.62513
[6] Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331-347. · Zbl 0887.62115 · doi:10.1007/BF02294555
[7] Hoijtink, H. J. A. (2012). Informative hypotheses: Theory and practice for behavioral and social scientists. Boca Raton: FL: CRC Press.
[8] Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press. · Zbl 0116.34904
[9] Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24, 65-81. · doi:10.1177/01466216000241004
[10] Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795. · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572
[11] Lynch, S. M. (2007). Introduction to applied bayesian statistics and estimation for social scientists. New York, NY: Springer. · Zbl 1133.62093
[12] Mokken, R. J. (1971). A theory and procedure of scale analysis. Berlin, Germany: De Gruyter. · Zbl 0887.62115
[13] Molenaar, I. W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows. Groningen, The Netherlands: ProGAMMA. · Zbl 0569.62097
[14] Mulder, J., Klugkist, I., van de Schoot, R., Meeus, W., Selfhout, M., & Hoijtink, H. (2009). Bayesian model selection of informative hypotheses for repeated measurements. Journal of Mathematical Psychology, 53, 530-546. · Zbl 1181.62026 · doi:10.1016/j.jmp.2009.09.003
[15] R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[16] Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630. · Zbl 0850.62357 · doi:10.1007/BF02294494
[17] Rosenbaum, P. R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49, 425-435. · Zbl 0569.62097 · doi:10.1007/BF02306030
[18] Scheiblechner, H. (2003). Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP). Psychometrika, 68, 79-96. · Zbl 1306.62496 · doi:10.1007/BF02296654
[19] Silvapulle, M. J., & Sen, P. K. (2005). Constrained statistical inference: Inequality, order, and shape restrictions. Hoboken, NJ: Wiley. · Zbl 1077.62019
[20] Tijmstra, J., Hessen, D. J., Van der Heijden, P. G. M., & Sijtsma, K. (2013). Testing manifest monotonicity using order-constrained statisticial inference. Psychometrika, 78, 83-97. · Zbl 1284.62755 · doi:10.1007/s11336-012-9297-x
[21] Van der Ark, L. A. (2005). Stochastic ordering of the latent trait by the sum score under various polytomous IRT models. Psychometrika, 70, 283-304. · Zbl 1306.62513 · doi:10.1007/s11336-000-0862-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.