×

Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient. (English) Zbl 1392.62249

Summary: We consider \(N\) independent stochastic processes \((X_i(t),t \in [0,T])\), \(i=1,\ldots,N\), defined by a stochastic differential equation with diffusion coefficients depending linearly on a random variable \(\phi_i\). The distribution of the random effect \(\phi_i\) depends on unknown population parameters which are to be estimated from a discrete observation of the processes \((X_i)\). The likelihood generally does not have any closed form expression. Two estimation methods are proposed: one based on the Euler approximation of the likelihood and another based on estimations of the random effects. When the distribution of the random effects is Gamma, the asymptotic properties of the estimators are derived when both \(N\) and the number of observations per component \((X_i)\) tend to infinity. The estimators are computed on simulated data for several models and show good performances.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62F12 Asymptotic properties of parametric estimators
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

Software:

MsdeParEst
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] O. Barndorff-Nielsen and M. Sorensen, Information quantities in non-classical settings. Comput. Stat. Data Anal.12 (1991) 143-158. · Zbl 0870.62005 · doi:10.1016/0167-9473(91)90014-S
[2] M. Delattre and M. Lavielle, Coupling the SAEM algorithm and the extended kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Stat. Interface6 (2013) 519-532. · Zbl 1326.93121 · doi:10.4310/SII.2013.v6.n4.a10
[3] M. Delattre, V. Genon-Catalot and A. Samson, Maximum likelihood estimation for stochastic differential equations with random effects. Scand. J. Stat.40 (2013) 322-343. · Zbl 1328.62148 · doi:10.1111/j.1467-9469.2012.00813.x
[4] S. Donnet and A. Samson, Parametric inference for mixed models defined by stochastic differential equations. ESAIM: PS12 (2008) 196-218. · Zbl 1182.62164 · doi:10.1051/ps:2007045
[5] S. Donnet and A. Samson, A review on estimation of stochastic differential equations for pharmacokinetic - pharmacodynamic models. Adv. Drug Delivery Rev.65 (2013) 929-939. · doi:10.1016/j.addr.2013.03.005
[6] V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré, Probab. Statist.29 (1993) 119-151. · Zbl 0770.62070
[7] V. Genon-Catalot, T. Jeantheau and C. Laredo, Parameter estimation for discretely observed stochastic volatility models. Bernoulli5 (1999) 855-872. · Zbl 0942.62096 · doi:10.2307/3318447
[8] M. Kessler, A. Lindner and M. Sorensen, Statistical Methods for Stochastic Differential Equations. Edited by M. Kessler, A. Lindner and M. Sorensen. CRC Press (2012).
[9] L. Nie, Strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models. Metrika63 (2006) 123-143. · Zbl 1095.62028 · doi:10.1007/s00184-005-0001-3
[10] U. Picchini, A. De Gaetano and S. Ditlevsen, Stochastic differential mixed-effects models. Scand. J. Stat.37 (2010) 67-90. · Zbl 1224.62041 · doi:10.1111/j.1467-9469.2009.00665.x
[11] U. Picchini and S. Ditlevsen, Practicle estimation of high dimensional stochastic differential mixed-effects models. Comput. Stat. Data Anal.55 (2011) 1426-1444. · Zbl 1328.65014 · doi:10.1016/j.csda.2010.10.003
[12] T. Sweeting, Uniform asymptotic normality of the maximum likelihood estimator. Ann. Stat.8 (1980) 1179-1403. · Zbl 0447.62041 · doi:10.1214/aos/1176345208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.