×

Modeling membrane systems using colored stochastic Petri nets. (English) Zbl 1333.68109

Summary: Membrane systems are a very powerful computational modeling language inspired by the internal organization of living cells. In this paper we explore the use of colored stochastic Petri nets to model an attractive variant of membrane systems – stochastic membrane systems with active membranes. In our approach, each object is modeled as a place and each membrane as a color. As a result, we can easily represent large-scale membrane systems as compact colored Petri nets. Moreover, using dynamic color sets, we can conveniently model membrane systems with active membranes. We take the virus infection process as an example to illustrate our approach. Our paper demonstrates that colored Petri nets with dynamic color sets are a compelling tool for representing and analyzing dynamic membrane systems, and thus do contribute to the description and analysis of their dynamic behavior.

MSC:

68Q05 Models of computation (Turing machines, etc.) (MSC2010)
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)

Software:

SNOOPY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agrigoroaiei O, Ciobanu G (2010) Flattening the transition P systems with dissolution. LNCS, vol 6501. Springer, pp 53-64 · Zbl 1259.68050
[2] Bernardini F, Gheorghe M, Margenstern M, Verlan S (2007a) Networks of cells and Petri nets. In: Proceedings of 5th brainstorming week on membrane computing, pp 33-62 · Zbl 1151.68505
[3] Bernardini F, Gheorghe M, Romero-Campero FJ, Walkinshaw N (2007b) A hybrid approach to modelling biological systems. LNCS, vol 4860. Springer, pp 138-159 · Zbl 1137.68373
[4] Charlie (2012) Charlie—a tool for the analysis of place/transition Petri nets. http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie · Zbl 1260.68268
[5] Donaldson R, Gilbert D (2008) A model checking approach to the parameter estimation of biochemical pathways. In: Proceedings of the 6th international conference on computational methods in systems biology. LNCS/LNBI, vol 5307. Springer, pp 269-287
[6] Gheorghe M, Manca V, Romero-Campero FJ (2010) Deterministic and stochastic P systems for modelling cellular processes. Nat Comput 9(2):457-473 · Zbl 1343.92185 · doi:10.1007/s11047-009-9158-4
[7] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340-2361 · doi:10.1021/j100540a008
[8] Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In: Proceedings of the 8th international conference on formal methods for computational systems biology. LNCS, vol 5016. Springer, pp 215-264
[9] Heiner M, Herajy M, Liu F, Rohr C, Schwarick M (2012). Snoopy—a unifying Petri net tool. In: Proceedings of PETRI NETS 2012, LNCS, vol 7347. Springer, pp 398-407
[10] Heiner M, Lehrack S, Gilbert D, Marwan W (2009) Extended stochastic Petri nets for model-based design of wetlab experiments. Trans Comput Syst Biol XI LNBI 5750:138-163 · Zbl 1260.68268 · doi:10.1007/978-3-642-04186-0_7
[11] Jensen K (1981) Coloured Petri nets and the invariant-method. Theoret Comput Sci 14(3):317-336 · Zbl 0475.68035 · doi:10.1016/0304-3975(81)90049-9
[12] Jensen K, Kristensen LM, Wells LM (2007) Coloured Petri nets and CPN tools for modelling and validation of concurrent systems. Int J Softw Tools Technol Transf 9(3/4):213-254 · doi:10.1007/s10009-007-0038-x
[13] Kleijn J, Koutny M (2009) A Petri net model for membrane systems with dynamic structure. Nat Comput 8(4):781-796 · Zbl 1185.68446 · doi:10.1007/s11047-008-9101-0
[14] Kleijn J, Koutny M, Rozenberg G (2006) Towards a Petri net semantics for membrane systems. In: Proceedings of the 6th international workshop on membrane computing, LNCS, vol 3850. Springer, pp 292-309 · Zbl 1135.68417
[15] Liu F (2012) Colored Petri nets for systems biology. PhD thesis, Department of Computer Science, Brandenburg University of Technology Cottbus
[16] Liu F, Heiner M (2010) Colored Petri nets to model and simulate biological systems. In: Proceedings of international workshop on biological processes and petri nets, satellite event of Petri Nets 2010 · Zbl 0475.68035
[17] Liu F, Heiner M, Rohr C (2012) Manual for colored Petri nets in Snoopy. Technical report, 02-12, Department of Computer Science, Brandenburg University of Technology Cottbus. http://www-dssz.informatik.tu-cottbus.de/publications/btu-reports/Manual_for_colored_Petri_nets_2012_03.pdf
[18] Păun G (2000) Computing with membranes. J Comput Syst Sci 61:108-143 · Zbl 0956.68055 · doi:10.1006/jcss.1999.1693
[19] Păun G (2002) Membrane computing: an introduction. Springer, Berlin · Zbl 1034.68037 · doi:10.1007/978-3-642-56196-2
[20] Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press, Oxford · Zbl 1179.68004 · doi:10.1007/978-3-642-11467-0
[21] Qi Z, You J, Mao H (2004) P systems and Petri nets. In: Proceedings of the 5th international workshop of membrane computing, LNCS, vol 2933. Springer, pp 286-303 · Zbl 1202.68199
[22] Rohr C, Marwan W, Heiner M (2010) Snoopy—a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7):974-975 · doi:10.1093/bioinformatics/btq050
[23] Spicher A, Michel O, Cieslak M, Giavitto J, Prusinkiewicz P (2008) Stochastic P systems and the simulation of biochemical processes with dynamic compartments. BioSystems 91(3):458-472 · doi:10.1016/j.biosystems.2006.12.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.