×

On the singular behaviour of scattering amplitudes in quantum field theory. (English) Zbl 1333.81149

Summary: We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry

Software:

GoSam; HELAC-1LOOP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C.F. Berger et al., Precise Predictions for W +3 Jet Production at Hadron Colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [INSPIRE]. · doi:10.1103/PhysRevLett.102.222001
[2] K. Melnikov and G. Zanderighi, W +3 jet production at the LHC as a signal or background, Phys. Rev.D 81 (2010) 074025 [arXiv:0910.3671] [INSPIRE].
[3] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: A study of pp → tt¯\[ t\overline{t} + 2\] jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [INSPIRE]. · doi:10.1103/PhysRevLett.104.162002
[4] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett.106 (2011) 052001 [arXiv:1012.3975] [INSPIRE]. · doi:10.1103/PhysRevLett.106.052001
[5] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, WZ Production in Association with Two Jets at Next-to-Leading Order in QCD, Phys. Rev. Lett.111 (2013) 052003 [arXiv:1305.1623] [INSPIRE]. · doi:10.1103/PhysRevLett.111.052003
[6] Z. Bern et al., Next-to-Leading Order W +5-Jet Production at the LHC, Phys. Rev.D 88 (2013) 014025 [arXiv:1304.1253] [INSPIRE].
[7] G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun.184 (2013) 986 [arXiv:1110.1499] [INSPIRE]. · doi:10.1016/j.cpc.2012.10.033
[8] G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J.C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE]. · doi:10.1140/epjc/s10052-014-3001-5
[9] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. · doi:10.1007/JHEP07(2014)079
[10] P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett.105 (2010) 011801 [arXiv:1003.4451] [INSPIRE]. · doi:10.1103/PhysRevLett.105.011801
[11] S. Catani, G. Ferrera and M. Grazzini, W Boson Production at Hadron Colliders: The Lepton Charge Asymmetry in NNLO QCD, JHEP05 (2010) 006 [arXiv:1002.3115] [INSPIRE]. · doi:10.1007/JHEP05(2010)006
[12] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett.103 (2009) 082001 [arXiv:0903.2120] [INSPIRE]. · doi:10.1103/PhysRevLett.103.082001
[13] C. Anastasiou, G. Dissertori and F. Stöckli, NNLO QCD predictions for the H →WW →ℓνℓν signal at the LHC, JHEP09 (2007) 018 [arXiv:0707.2373] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/018
[14] M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross section at Hadron Colliders Through O(αS4), Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. · doi:10.1103/PhysRevLett.110.252004
[15] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
[16] S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett.B 378 (1996) 287 [hep-ph/9602277] [INSPIRE]. · doi:10.1016/0370-2693(96)00425-X
[17] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE]. · doi:10.1016/0550-3213(96)00110-1
[18] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE]. · doi:10.1088/1126-6708/2005/09/056
[19] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE]. · doi:10.1103/PhysRevLett.98.222002
[20] S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo and J.-C. Winter, From loops to trees by-passing Feynman’s theorem, JHEP09 (2008) 065 [arXiv:0804.3170] [INSPIRE]. · Zbl 1245.81117 · doi:10.1088/1126-6708/2008/09/065
[21] I. Bierenbaum, S. Catani, P. Draggiotis and G. Rodrigo, A Tree-Loop Duality Relation at Two Loops and Beyond, JHEP10 (2010) 073 [arXiv:1007.0194] [INSPIRE]. · Zbl 1291.81381 · doi:10.1007/JHEP10(2010)073
[22] I. Bierenbaum, S. Buchta, P. Draggiotis, I. Malamos and G. Rodrigo, Tree-Loop Duality Relation beyond simple poles, JHEP03 (2013) 025 [arXiv:1211.5048] [INSPIRE]. · doi:10.1007/JHEP03(2013)025
[23] I. Bierenbaum, P. Draggiotis, S. Buchta, G. Chachamis, I. Malamos and G. Rodrigo, News on the Loop-tree Duality, Acta Phys. Polon.B 44 (2013) 2207 [INSPIRE]. · Zbl 1371.81125 · doi:10.5506/APhysPolB.44.2207
[24] R.P. Feynman, Quantum theory of gravitation, Acta Phys. Polon.24 (1963) 697 [INSPIRE].
[25] R.P. Feynman, Closed Loop And Tree Diagrams, in Magic Without Magic, J.R. Klauder ed., Freeman, San Francisco, (1972), pg. 355, in Selected papers of Richard Feynman, L.M. Brown ed., World Scientific, Singapore, (2000) pg. 867.
[26] G.F. Sterman, Mass Divergences in Annihilation Processes. I. Origin and Nature of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev.D 17 (1978) 2773 [INSPIRE].
[27] W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev.D 79 (2009) 033005 [arXiv:0812.3686] [INSPIRE].
[28] Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev.D 74 (2006) 093006 [hep-ph/0610028] [INSPIRE].
[29] M. Kramer and D.E. Soper, Next-to-leading order numerical calculations in Coulomb gauge, Phys. Rev.D 66 (2002) 054017 [hep-ph/0204113] [INSPIRE].
[30] D.E. Soper, Choosing integration points for QCD calculations by numerical integration, Phys. Rev.D 64 (2001) 034018 [hep-ph/0103262] [INSPIRE].
[31] D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev.D 62 (2000) 014009 [hep-ph/9910292] [INSPIRE].
[32] D.E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett.81 (1998) 2638 [hep-ph/9804454] [INSPIRE]. · doi:10.1103/PhysRevLett.81.2638
[33] S. Becker and S. Weinzierl, Direct contour deformation with arbitrary masses in the loop, Phys. Rev.D 86 (2012) 074009 [arXiv:1208.4088] [INSPIRE].
[34] S. Becker and S. Weinzierl, Direct numerical integration for multi-loop integrals, Eur. Phys. J.C 73 (2013) 2321 [arXiv:1211.0509] [INSPIRE]. · doi:10.1140/epjc/s10052-013-2321-1
[35] S. Mandelstam, Unitarity Condition Below Physical Thresholds in the Normal and Anomalous Cases, Phys. Rev. Lett.4 (1960) 84 [INSPIRE]. · Zbl 0089.21603 · doi:10.1103/PhysRevLett.4.84
[36] H. Rechenberg and E.C.G. Sudarshan, Analyticity in quantum field theory. 1. The triangle graph revisited, Nuovo Cim.A 12 (1972) 541 [INSPIRE]. · doi:10.1007/BF02736610
[37] S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD amplitudes, Phys. Lett.B 586 (2004) 323 [hep-ph/0312067] [INSPIRE]. · doi:10.1016/j.physletb.2004.02.039
[38] G.F.R. Sborlini, D. de Florian and G. Rodrigo, Double collinear splitting amplitudes at next-to-leading order, JHEP01 (2014) 018 [arXiv:1310.6841] [INSPIRE]. · doi:10.1007/JHEP01(2014)018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.