×

Cluster differences unfolding for two-way two-mode preference rating data. (English) Zbl 1360.62358

Summary: Classification and spatial methods can be used in conjunction to represent the individual information of similar preferences by means of groups. In the context of latent class models and using Simulated Annealing, the cluster-unfolding model for two-way two-mode preference rating data has been shown to be superior to a two-step approach of first deriving the clusters and then unfolding the classes. However, the high computational cost makes the procedure only suitable for small or medium-sized data sets, and the hypothesis of independent and normally distributed preference data may also be too restrictive in many practical situations. Therefore, an alternating least squares procedure is proposed, in which the individuals and the objects are partitioned into clusters, while at the same time the cluster centers are represented by unfolding. An enhanced Simulated Annealing algorithm in the least squares framework is also proposed in order to address the local optimum problem. Real and artificial data sets are analyzed to illustrate the performance of the model.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P15 Applications of statistics to psychology
91C15 One- and multidimensional scaling in the social and behavioral sciences

Software:

pertsaus2
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] BÖCKENHOLT, U., and BÖCKENHOLT, I., (1991), “Constrained Latent Class Analysis: Simultaneous Classification and Scaling of Discrete Choice Data”, Psychometrika 56, 699-716. · doi:10.1007/BF02294500
[2] BORG I., and GROENEN P.J.F., (2005), Modern Multidimensional Scaling: Theory and Applications (2nd ed.), New York: Springer. · Zbl 1085.62079
[3] BUSING, F.M.T.A., (2006), “Avoiding Degeneracy in Metric Unfolding by Penalizing the Intercept”, British Journal of Mathematical and Statistical Psychology 59, 419-427. · doi:10.1348/000711005X68507
[4] BUSING, F.M.T.A., HEISER, W., and GROENEN, P.J.F., (2005), “Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation”, Psychometrika 70(1), 71-98. · Zbl 1306.62390 · doi:10.1007/s11336-001-0908-1
[5] CALINSKI, R.B., and HARABASZ, J. (1974), “A Dendrite Method for Cluster Analysis”, Communications in Statistics 3, 1-27. · Zbl 0273.62010
[6] CHINTAGUNTA, P.K., (1994), “Heterogeneous Logit Implications for Brand Positioning”, Journal of Marketing Research 31, 304-311. · doi:10.2307/3152201
[7] COOMBS, C.H., (1964), A Theory of Data, New York: Wiley.
[8] DESARBO, W.S., HOWARD, D.J., and JEDIDI, K., (1990), “MULTICLUS: A New Method for Simultaneously Performing Multidimensional Scaling and Cluster Analysis”, Psychometrika 56, 121-136. · Zbl 0727.62107 · doi:10.1007/BF02294590
[9] DESARBO, W. S., JEDIDI, K.J., COOL, K., and SCHENDEL, O., (1991), “Simultaneous Multidimensional Unfolding and Cluster Analysis: An Investigation of Strategic Groups”, Marketing Letters 2, 129-146. · doi:10.1007/BF00436033
[10] DESARBO, W.S., MANRAI, A.K., and MANRAI, L.A., (1994), “Latent Class Multidimensional Scaling: A Review of Recent Developments in the Marketing and Psychometric Literature”, in Advanced Methods of Marketing Research, ed. R.P. Bagozzi, Cambridge: Blackwell, pp. 190-222. · Zbl 1051.62056
[11] DESARBO, W. S., RAMASWAMY, V., and CHATTERJEE, R., (1995), “Analyzing Constant-Sum Multiple Criterion Data: A Segment-Level Approach”, Journal of Marketing Research 32, 222-232. · doi:10.2307/3152050
[12] DESARBO, W.S., YOUNG, M.R., and RANGASWAMY, A., (1997), “A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research”, Technical Report, The Pennsylvania State University.
[13] DE SOETE, G., and CARROLL, J.D., (1994). “K-means Clustering in a Low Dimensional Euclidean Space”, in New Approaches in Classification and Data Analyisis, eds. E. Diday et al., Heidelberg: Springer Verlag, pp. 212-219. · Zbl 1159.91469
[14] DE SOETE, G., and HEISER, W.J., (1993), “A Latent Class Unfolding Model for Analyzing Single Stimulus Preference Ratings”, Psychometrika, 58, 545-565. · Zbl 0826.62098 · doi:10.1007/BF02294826
[15] DE SOETE, G., and WINSBERG, S., (1993), “A Latent Class Vector Model for Preference Ratings”, Journal of Classification 10, 195-208. · Zbl 0800.62751 · doi:10.1007/BF02626091
[16] EVERIT, B. S., LANDAU, S., and LEESE, M., (2001). Cluster Analysis (4th ed.), London: Arnold.
[17] HEISER, W.J., (1981), “Unfolding Analysis of Proximity Data”, unpublished doctoral dissertation, University of Leiden, The Netherlands.
[18] HEISER, W.J., (1987), “The Unfolding Technique”, in Developments in Numerical Ecology, eds. P. Legendre & L. Legendre, Berlin: Springer-Verlag, pp. 189-221.
[19] HEISER, W.J., (1991), “A Generalized Majorization Method for Least Squares Multidimensional Scaling of Pseudodistances that May Be Negative”, Psychometrika, 56, 7-27. · Zbl 0726.92032 · doi:10.1007/BF02294582
[20] HEISER W.J., (1993), “Clustering in Low-Dimensional Space”, in Information and Classification: Concepts, Methods and Applications, eds. B. Lausen, R. Klar, and O. Opitz, Heidelberg: Springer Verlag, pp. 162-173. · Zbl 1084.62055
[21] HEISER W.J, and GROENEN P.J.F. (1997), “Cluster Differences Scaling with a Within-Clusters Loss Component and a Fuzzy Succesive Approximation Strategy to Avoid Local Minima”, Psychometrika, 62, 63-83. · Zbl 0889.92037 · doi:10.1007/BF02294781
[22] KIERS, H.A.L., VICARI, D., and VICHI, M., (2005), “Simultaneous Classification and Multidimensional Scaling with External Information”, Psychometrika 70, 433-460. · Zbl 1306.62449 · doi:10.1007/s11336-002-0998-4
[23] KRANTZ, D.H., (1967), “Rational Distance Functions for Multidimensional Scaling”, Journal of Mathematical Psychology 4, 226-245 · Zbl 0161.40001 · doi:10.1016/0022-2496(67)90051-X
[24] LUCE, R.D., (1961), “A Choice Theory Analysis of Similarity Judgments”, Psychometrika, 26, 151-163. · Zbl 0099.36003 · doi:10.1007/BF02289711
[25] METROPOLIS, N.A., ROSENBLUTH, M., ROSENBLUTH, A., TELLER, A., and TELLER, E. (1953), “Equation of State Calculations by Fast Computing Machines”, Journal of Chemical Physics, 21, 1087-1092. · Zbl 1431.65006 · doi:10.1063/1.1699114
[26] MILLIGAN, G.W., and COOPER, M.C., (1985), “An Examination of Procedures for Determining the Number of Clusters in a Data Set”, Psychometrika, 50, 159-179. · doi:10.1007/BF02294245
[27] MURILLO, A., VERA, J.F., and HEISER, W.J., (2005), “A Permutation-Translation Simulated Annealing Algorithms for <Emphasis Type=”Italic“>l1 and <Emphasis Type=”Italic“>l2 Unidimensional Scaling”, Journal of Classification 22, 119-138. · Zbl 1084.62055 · doi:10.1007/s00357-005-0008-5
[28] ROCCI, R., and VICHI, M., (2008), “Two-Mode Multi-Partitioning”, Computational Statistics and Data Analysis, 52(8),1984-2003. · Zbl 1452.62463 · doi:10.1016/j.csda.2007.06.025
[29] SUGAR, C.A., and JAMES, G.M., (2003), “Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach”, Journal of the American Statistical Asssociation, 98, 750-762. · Zbl 1046.62064 · doi:10.1198/016214503000000666
[30] VAN BUUREN, S., and HEISER, W.J., (1989), “Clustering Objects into Groups under Optimal Scaling of Variables”, Psychometrika 54, 699-706. · doi:10.1007/BF02296404
[31] VAN DEUN, K., MARCHAL, K., HEISER, W.J., ENGELEN, K., and VAN MECHELEN, I., (2007), “Joint Mapping of Genes and Conditions via Multidimensional Unfolding Analysis”, BMC Bioinformatics, 8:181. · doi:10.1186/1471-2105-8-181
[32] VAN MECHELEN, I., BOCK, H.-H., and DE BOECK, P. (2004), “Two-Mode Clustering Methods: A Structured Overview”, Statistical Methods in Medical Research, 13, 363-394. · Zbl 1053.62078 · doi:10.1191/0962280204sm373ra
[33] VAN ROSMALEN, J., GROENEN, P.J.F., TREJOS, J., and CASTILLO, W., (2009), “Optimization Strategies for Two-Mode Partitioning”, Journal of Classification 26, 155-181. · Zbl 1337.62145 · doi:10.1007/s00357-009-9031-2
[34] VERA, J.F., and DÍAZ-GARCÍA, J.A., (2008), “A Global Simulated Annealing Heuristic for the Three-Parameter Lognormal Maximum Likelihood Estimation”, Computational Statistics and Data Analysis, 52(12), 5055-5065. · Zbl 1452.62210 · doi:10.1016/j.csda.2008.04.033
[35] VERA, J.F., HEISER, W.J., and MURILLO, A., (2007), “Global Optimization in any Minkowski Metric: A Permutation-Translation Simulated Annealing Algorithm for Multidimensional Scaling”, Journal of Classification, 24, 277-301. · Zbl 1159.91469 · doi:10.1007/s00357-007-0020-1
[36] VERA, J.F., MACÍAS, R., and ANGULO, J.M., (2008), “Non-Stationary Spatial Covariance Structure Estimation in Oversampled Domains by Cluster Differences Scaling with Spatial Constraints”, Stochastic Environmental Research and Risk Assessment, 22, 95-106. · Zbl 1169.62095 · doi:10.1007/s00477-006-0100-3
[37] VERA, J.F., MACÍAS, R., and ANGULO, J.M., (2009), “A Latent Class MDS Model withSpatial Constraints for Non-Stationary Spatial Covariance Estimation”, Stochastic Environmental Research and Risk Assessment. 23(6), 769-779. · Zbl 1416.62294 · doi:10.1007/s00477-008-0257-z
[38] VERA, J.F., MACÍAS, R., and HEISER, W.J., (2009a), “A Latent Class MultidimensionalScaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data”, Psychometrika, 74(2), 297-315. · Zbl 1243.62146 · doi:10.1007/s11336-008-9104-x
[39] VERA, J.F., MACÍAS, R., and HEISER, W.J., (2009b), “A Dual Latent Class Unfolding Model for Two-Way Two-Mode Preference Rating Data”, Computational Statistics and Data Analysis, 53(8), 3231-3244. · Zbl 1453.62228 · doi:10.1016/j.csda.2008.07.019
[40] VICHI, M., and KIERS, H.A.L., (2001), “Factorial k-Means Analysis for Two-Way Data”, Computational Statistics and Data Analysis 37, 49-64. · Zbl 1051.62056 · doi:10.1016/S0167-9473(00)00064-5
[41] WANG, M.M, SCHÖNEMANN, P.H., and Rusk, J.B., (1975), “A Conjugate Gradient Algorithm for the Multidimensional Analysis of Preference Data”, Multivariate Behavioral Research, 10, 45-79. · doi:10.1207/s15327906mbr1001_4
[42] WEDEL, M., and DESARBO, W.S., (1996), “An Exponential-Family Multidimensional Scaling Mixture Methodology”, Journal of Business and Economic Statistics 14, 447-459.
[43] WINKLER, G., (1995), Image Analysis, Random Fields and Dynamic Monte Carlo Methods, New York: Springer-Verlag. · Zbl 0821.68125 · doi:10.1007/978-3-642-97522-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.