×

Short-term balancing of supply and demand in an electricity system: forecasting and scheduling. (English) Zbl 1334.90047

Summary: Until recently, the modelling of electricity system operations has mainly focused on hour-by-hour management. However, with the introduction of renewable energy sources such as wind power, fluctuations within the hour result in imbalances between supply and demand that are undetectable with an hourly time resolution. Ramping restrictions on production units and transmission lines contribute further to these imbalances. In this paper, we therefore propose a model for optimising electricity system operations within the hour. Taking a social welfare perspective, the model aims at reducing intra-hour costs by optimally activating so-called manual reserves based on forecasted imbalances. Since manual reserves are significantly less expensive than automatic reserves, we expect a considerable reduction in total costs of balancing. We illustrate our model in a Danish case study and investigate the effect of an expected increase in installed wind capacity. We find that the balancing costs do not outweigh the benefits of the inexpensive wind power, and that the savings from activating manual reserves are even larger for the high wind capacity case.

MSC:

90B35 Deterministic scheduling theory in operations research

Software:

WILMAR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bouffard, F., & Galiana, F. (2008). Stochastic security for operations planning with significant wind power generation. IEEE Transactions on Power Systems, 23(2), 306-316. doi:10.1109/TPWRS.2008.919318. · doi:10.1109/TPWRS.2008.919318
[2] Bunn, D. W., & Paschentis, S. N. (1986). Development of a stochastic model for the economic dispatch of electric power. European Journal of Operational Research, 27(2), 179-191. doi:10.1016/0377-2217(86)90059-7. · Zbl 0602.90084 · doi:10.1016/0377-2217(86)90059-7
[3] Carøe, C. C., & Schultz, R. (1998) A two-stage stochastic program for unit commitment under uncertainty in a hydro-thermal power system. Tech. Rep. SC-98-11, ZIB, Takustr.7, 14195 Berlin.
[4] Carrión, M., & Arroyo, J. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371-1378. doi:10.1109/TPWRS.2006.876672. · doi:10.1109/TPWRS.2006.876672
[5] Dillon, T., Edwin, K.W., Kochs, H.D., & Taud, R.J. (1978). Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Transactions on Power Apparatus and Systems, PAS-97(6):2154-2166. doi:10.1109/TPAS.1978.354719.
[6] Doorman, G., & Nygreen, B. (2003). Market price calculations in restructured electricity markets. Annals of Operations Research, 124(1-4), 49-67. · Zbl 1053.90074 · doi:10.1023/B:ANOR.0000004762.31449.33
[7] Ela, E., & O’Malley, M. (2012). Studying the variability and uncertainty impacts of variable generation at multiple timescales. IEEE Transactions on Power Systems, 27(3), 1324-1333. doi:10.1109/TPWRS.2012.2185816. · doi:10.1109/TPWRS.2012.2185816
[8] Farahmand, H., & Doorman, G. (2012). Balancing market integration in the Northern European continent. Applied Energy, 96, 316-326. doi:10.1016/j.apenergy.2011.11.041. · doi:10.1016/j.apenergy.2011.11.041
[9] Garver, L. (1962). Power generation scheduling by integer programming-development of theory. Transactions of the American Institute of Electrical Engineers Part III Power Apparatus and Systems, 81(3), 730-734. doi:10.1109/AIEEPAS.1962.4501405. · doi:10.1109/AIEEPAS.1962.4501405
[10] Gollmer, R., Nowak, M. P., Römisch, W., & Schultz, R. (2000). Unit commitment in power generation-a basic model and some extensions. Annals of Operations Research, 96(1-4), 167-189. · Zbl 0997.90534 · doi:10.1023/A:1018947401538
[11] Heredia, F.-J., Rider, M. J., & Corchero, C. (2012). A stochastic programming model for the optimal electricity market bid problem with bilateral contracts for thermal and combined cycle units. Annals of Operations Research, 193(1), 107-127. doi:10.1007/s10479-011-0847-x. · Zbl 1254.90138 · doi:10.1007/s10479-011-0847-x
[12] Hobbs, B. F., Rothkopf, M. H., O’Neill, R. P., & Chao, H.-P. (Eds.) (2001) The next generation of electric power unit commitment models. Springer Science & Business Media 36
[13] Jaehnert, S., & Doorman, G. L. (2012). Assessing the benefits of regulating power market integration in Northern Europe. International Journal of Electrical Power & Energy Systems, 43(1), 70-79. doi:10.1016/j.ijepes.2012.05.010. · doi:10.1016/j.ijepes.2012.05.010
[14] Jordà, Ò., & Marcellino, M. (2010). Path forecast evaluation. Journal of Applied Econometrics, 25(4), 635-662. doi:10.1002/jae.1166. · doi:10.1002/jae.1166
[15] Lindgren, E., & Söder, L. (2008). Minimizing regulation costs in multi-area systems with uncertain wind power forecasts. Wind Energy, 11(1), 97-108. · doi:10.1002/we.231
[16] Louie, H. (2010) Evaluation of probabilistic models of wind plant power output characteristics. In Probabilistic methods applied to power systems (PMAPS), 2010 IEEE 11th international conference, Singapore: 442-447.
[17] Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. doi:10.1016/j.energy.2006.10.017. third Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems. · Zbl 1254.90138
[18] Morales, J., Conejo, A., & Pérez-Ruiz, J. (2009). Economic valuation of reserves in power systems with high penetration of wind power. IEEE Transactions on Power Systems, 24(2), 900-910. doi:10.1109/TPWRS.2009.2016598. · doi:10.1109/TPWRS.2009.2016598
[19] Morales-España, G., Latorre, J., & Ramos, A. (2013). Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment. IEEE Transactions on Power Systems, 28(2), 1288-1296. doi:10.1109/TPWRS.2012.2222938. · doi:10.1109/TPWRS.2012.2222938
[20] Nowak, M. P., & Römisch, W. (2000). Stochastic lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Annals of Operations Research, 100(1-4), 251-272. doi:10.1023/A:1019248506301. · Zbl 1017.90072 · doi:10.1023/A:1019248506301
[21] Ostrowski, J., Anjos, M., & Vannelli, A. (2012). Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Transactions on Power Systems, 27(1), 39-46. doi:10.1109/TPWRS.2011.2162008. · doi:10.1109/TPWRS.2011.2162008
[22] Papavasiliou, A., & Oren, S. S. (2013). Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. Operations Research, 61(3), 578-592. doi:10.1287/opre.2013.1174. · Zbl 1273.90035 · doi:10.1287/opre.2013.1174
[23] Pritchard, G., Zakeri, G., & Philpott, A. (2010). A single-settlement, energy-only electric power market for unpredictable and intermittent participants. Operations Research, 58(4-Part-2), 1210-1219. doi:10.1287/opre.1090.0800. · Zbl 1231.90224 · doi:10.1287/opre.1090.0800
[24] Sheble, G. B., & Fahd, G. N. (1994). Unit commitment literature synopsis. IEEE Transactions on Power Systems, 9(1), 128-135. doi:10.1109/59.317549. · doi:10.1109/59.317549
[25] Takriti, S., Birge, J. R., & Long, E. (1996). A stochastic model for the unit commitment problem. IEEE Transactions on Power Systems, 11(3), 1497-1508. doi:10.1109/59.535691. · doi:10.1109/59.535691
[26] Weber, C., Meibom, P., Barth, R., & Brand, H. (2009). WILMAR: A stochastic programming tool to analyze the large-scale integration of wind energy. In Optimization in the energy industry, chap 19, pp 437-458, Energy Systems, Springer, Berlin. · Zbl 1160.90617
[27] Zheng, Q., Wang, J., Pardalos, P., & Guan, Y. (2012). A decomposition approach to the two-stage stochastic unit commitment problem. Annals of Operations Research, 210(1), 387-410. doi:10.1007/s10479-012-1092-7. · Zbl 1284.90114 · doi:10.1007/s10479-012-1092-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.