×

Lepton flavour violation in RS models with a brane- or nearly brane-localized Higgs. (English) Zbl 1334.81086

Summary: We perform a comprehensive study of charged lepton flavour violation in Randall-Sundrum (RS) models in a fully 5D quantum-field-theoretical framework. We consider the RS model with minimal field content and a “custodially protected” extension as well as three implementations of the IR-brane localized Higgs field, including the non-decoupling effect of the KK excitations of a narrow bulk Higgs. Our calculation provides the first complete result for the flavour-violating electromagnetic dipole operator in Randall-Sundrum models. It contains three contributions with different dependence on the magnitude of the anarchic 5D Yukawa matrix, which can all be important in certain parameter regions. We study the typical range for the branching fractions of \(\mu \to e \gamma\), \(\mu \to 3 e\), \(\mu N \to e N\) as well as \(\tau \to \mu \gamma\), \(\tau \to 3 \mu\) and the electron electric dipole moment by a numerical scan in both the minimal and the custodial RS model. The combination of \(\mu \to e \gamma\) and \(\mu N \to e N\) currently provides the most stringent constraint on the parameter space of the model. A typical lower limit on the KK scale \(T\) is around \(2 \text{TeV}\) in the minimal model (up to 4 TeV in the bulk Higgs case with large Yukawa couplings), and around \(4 \text{TeV}\) in the custodially protected model, which corresponds to a mass of about 10 TeV for the first KK excitations, far beyond the lower limit from the non-observation of direct production at the LHC.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V22 Unified quantum theories
81V35 Nuclear physics
81U99 Quantum scattering theory
83E30 String and superstring theories in gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories

Software:

DLMF; Axodraw
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Randall, L.; Sundrum, R., Phys. Rev. Lett., 83, 4690 (1999)
[2] Randall, L.; Sundrum, R., Phys. Rev. Lett., 83, 3370 (1999)
[3] Grossman, Y.; Neubert, M., Phys. Lett. B, 474, 361 (2000)
[4] Gherghetta, T.; Pomarol, A., Nucl. Phys. B, 586, 141 (2000)
[5] Huber, S. J.; Shafi, Q., Phys. Lett. B, 498, 256 (2001)
[6] Huber, S. J., Nucl. Phys. B, 666, 269 (2003)
[7] Agashe, K.; Perez, G.; Soni, A., Phys. Rev. D, 71, Article 016002 pp. (2005)
[8] Csaki, C.; Falkowski, A.; Weiler, A., JHEP, 0809, Article 008 pp. (2008)
[9] Blanke, M.; Buras, A. J.; Duling, B.; Gori, S.; Weiler, A., JHEP, 0903, Article 001 pp. (2009)
[10] Bauer, M.; Malm, R.; Neubert, M., Phys. Rev. Lett., 108, Article 081603 pp. (2012)
[11] Kitano, R., Phys. Lett. B, 481, 39 (2000)
[12] Moreau, G.; Silva-Marcos, J. I., JHEP, 0603, Article 090 pp. (2006)
[13] Agashe, K.; Blechman, A. E.; Petriello, F., Phys. Rev. D, 74, Article 053011 pp. (2006)
[14] Csaki, C.; Grossman, Y.; Tanedo, P.; Tsai, Y., Phys. Rev. D, 83, Article 073002 pp. (2011)
[15] Beneke, M.; Dey, P.; Rohrwild, J., JHEP, 1308, Article 010 pp. (2013)
[16] Beneke, M.; Moch, P.; Rohrwild, J., Int. J. Mod. Phys. A, 29, 1444011 (2014)
[17] Moch, P.; Rohrwild, J., J. Phys. G, 41, 105005 (2014)
[18] Buchmüller, W.; Wyler, D., Nucl. Phys. B, 268, 621 (1986)
[19] Grzadkowski, B.; Iskrzynski, M.; Misiak, M.; Rosiek, J., JHEP, 1010, Article 085 pp. (2010)
[20] Agashe, K.; Azatov, A.; Cui, Y.; Randall, L.; Son, M., JHEP, 1506, Article 196 pp. (2015)
[21] Chen, M. C.; Yu, H. B., Phys. Lett. B, 672, 253 (2009)
[22] Perez, G.; Randall, L., JHEP, 0901, Article 077 pp. (2009)
[23] Csaki, C.; Delaunay, C.; Grojean, C.; Grossman, Y., JHEP, 0810, Article 055 pp. (2008)
[24] Agashe, K.; Okui, T.; Sundrum, R., Phys. Rev. Lett., 102, Article 101801 pp. (2009)
[25] Atkins, M.; Huber, S. J., Phys. Rev. D, 82, Article 056007 pp. (2010)
[26] Kuno, Y.; Okada, Y., Rev. Mod. Phys., 73, 151 (2001)
[27] Chang, W.-F.; Ng, J. N., Phys. Rev. D, 71, Article 053003 pp. (2005)
[28] Agashe, K.; Delgado, A.; May, M. J.; Sundrum, R., JHEP, 0308, Article 050 pp. (2003)
[29] Agashe, K.; Contino, R.; Da Rold, L.; Pomarol, A., Phys. Lett. B, 641, 62 (2006)
[30] Carena, M.; Casagrande, S.; Goertz, F.; Haisch, U.; Neubert, M., JHEP, 1208, Article 156 pp. (2012)
[31] Malm, R.; Neubert, M.; Novotny, K.; Schmell, C., JHEP, 1401, Article 173 pp. (2014)
[32] Azatov, A.; Toharia, M.; Zhu, L., Phys. Rev. D, 80, Article 035016 pp. (2009)
[33] Crivellin, A.; Najjari, S.; Rosiek, J., JHEP, 1404, Article 167 pp. (2014)
[34] Pruna, G. M.; Signer, A., JHEP, 1410, Article 14 pp. (2014)
[35] Kitano, R.; Koike, M.; Okada, Y., Phys. Rev. D, 76, Article 059902 pp. (2007), (Erratum)
[36] Crivellin, A.; Hoferichter, M.; Procura, M., Phys. Rev. D, 89, Article 054021 pp. (2014)
[37] Crivellin, A.; Hoferichter, M.; Procura, M., Phys. Rev. D, 89, Article 093024 pp. (2014)
[38] Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I., Phys. Lett. B, 78, 443 (1978)
[39] Azatov, A.; Toharia, M.; Zhu, L., Phys. Rev. D, 82, Article 056004 pp. (2010)
[40] Archer, P. R.; Carena, M.; Carmona, A.; Neubert, M., JHEP, 1501, Article 060 pp. (2015)
[41] Barr, S. M.; Zee, A., Phys. Rev. Lett., 65, 2920 (1990), (Erratum)
[42] Chang, D.; Hou, W. S.; Keung, W. Y., Phys. Rev. D, 48, 217 (1993)
[43] Leigh, R. G.; Paban, S.; Xu, R. M., Nucl. Phys. B, 352, 45 (1991)
[44] Jenkins, E. E.; Manohar, A. V.; Trott, M., JHEP, 1310, Article 087 pp. (2013)
[45] Jenkins, E. E.; Manohar, A. V.; Trott, M., JHEP, 1401, Article 035 pp. (2014)
[46] Alonso, R.; Jenkins, E. E.; Manohar, A. V.; Trott, M., JHEP, 1404, Article 159 pp. (2014)
[47] Cacciapaglia, G.; Csaki, C.; Marandella, G.; Terning, J., JHEP, 0702, Article 036 pp. (2007)
[48] Davoudiasl, H.; Lillie, B.; Rizzo, T. G., JHEP, 0608, Article 042 pp. (2006)
[49] Casagrande, S.; Goertz, F.; Haisch, U.; Neubert, M.; Pfoh, T., JHEP, 0810, Article 094 pp. (2008)
[50] Delaunay, C.; Kamenik, J. F.; Perez, G.; Randall, L., JHEP, 1301, Article 027 pp. (2013)
[52] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press: Cambridge University Press New York, NY) · Zbl 1198.00002
[53] Weinberg, S., Phys. Rev. Lett., 19, 1264 (1967)
[54] Bellgardt, U., Nucl. Phys. B, 299, 1 (1988)
[55] Bertl, W. H., Eur. Phys. J. C, 47, 337 (2006)
[56] Adam, J., Phys. Rev. Lett., 110, Article 201801 pp. (2013)
[57] Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D. A.; Burnham, R. A.; Clifford, E. T.H.; Depommier, P.; Dixit, M. S., Phys. Rev. D, 38, 2102 (1988)
[58] Dohmen, C., Phys. Lett. B, 317, 631 (1993)
[59] Honecker, W., Phys. Rev. Lett., 76, 200 (1996)
[60] Olive, K. A., Chin. Phys. C, 38, Article 090001 pp. (2014)
[61] Filippas, T. A.; Pabit, P.; Siegel, R. T.; Welsh, R. E., Phys. Lett., 6, 118 (1963)
[62] Suzuki, T.; Measday, D. F.; Roalsvig, J. P., Phys. Rev. C, 35, 2212 (1987)
[63] Baron, J., Science, 343, 269 (2014)
[64] Aubert, B., Phys. Rev. Lett., 104, Article 021802 pp. (2010)
[65] Hayasaka, K., Phys. Lett. B, 666, 16 (2008)
[66] Aaij, R., Phys. Lett. B, 724, 36 (2013)
[67] Aoki, M., AIP Conf. Proc., 1441, 599 (2012)
[70] Baldini, A. M.; Cei, F.; Cerri, C.; Dussoni, S.; Galli, L.; Grassi, M.; Nicolo, D.; Raffaelli, F.
[71] Berger, N., Nucl. Phys. Proc. Suppl., 248-250, 35 (2014)
[72] Cabrer, J. A.; von Gersdorff, G.; Quiros, M., Phys. Rev. D, 84, Article 035024 pp. (2011)
[73] Moch, P.; Rohrwild, J., Nucl. Phys. B, 902, 142 (2016)
[74] Vermaseren, J. A.M., Comput. Phys. Commun., 83, 45 (1994)
[75] Binosi, D.; Theussl, L., Comput. Phys. Commun., 161, 76 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.