×

An anisotropic a contrario framework for the detection of convergences in images. (English) Zbl 1357.68192

Summary: The a contrario framework for the detection of convergences in an image consists in counting, for each tested point, the number of elementary linear structures that converge to it (up to a given precision), and when this number is high enough, the point is declared to be a meaningful point of convergence. This is so far analogous to a Hough transform, and the main contribution of the a contrario framework is to provide a statistical definition of what “high enough” means: it means large enough to ensure that in an image where all elementary structures are distributed according to a background noise model, there is, in expectation, less than 1 detection. Our aim in this paper is to discuss, from a methodological viewpoint, the choice and the influence of the background noise model. This model is generally taken as the uniform independent distribution on elementary linear structures, and here, we discuss the case of images that have a natural anisotropic distribution of structures. Our motivating example is the one of mammograms in which we would like to detect stellate patterns (that appear as local convergences of spicules), and in which the linear structures are naturally oriented towards the nipple. In this paper, we show how to tackle the two problems of (a) defining and estimating an anisotropic “normal” distribution from an image, and of (b) computing the probability that a random structure, following an anisotropic distribution, converges to any given convex region. We illustrate the whole approach with several examples.

MSC:

68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing
92C55 Biomedical imaging and signal processing

Software:

MegaWave
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502-507 (2003) · doi:10.1109/TPAMI.2003.1190575
[2] Bornefalk, J.: Use of quadrature filters for detection of stellate lesions in mammograms. In: Scandinavian Conference on Image Analysis (SCIA), pp. 649-658 (2005)
[3] Cao, F.: Application of the Gestalt principles to the detection of good continuations and corners in image level lines. Comput. Vis. Sci. 7(1), 3-13 (2004) · Zbl 1070.94501 · doi:10.1007/s00791-004-0123-6
[4] Desolneux, A.: When the a contrario approach becomes generative. Int. J. Comput. Vis. (2015). To appear · Zbl 1398.68575
[5] Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Interdisciplinary Applied Mathematics, vol. 34. Springer, New York (2008) · Zbl 1241.68001
[6] von Gioi Grompone, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722-732 (2010) · doi:10.1109/TPAMI.2008.300
[7] Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press, New York (2001) · Zbl 1015.60002
[8] Grosjean, B., Moisan, L.: A-contrario detectability of spots in textured backgrounds. J. Math. Imaging Vis. 33(3), 313-337 (2009) · doi:10.1007/s10851-008-0111-4
[9] Grosjean, B., Muller, S., Souchay, H.: Lesion detection using an a-contrario detector in simulated digital mammograms. In: Proceedings of SPIE, vol. 6146 (2006) · Zbl 1328.68253
[10] Karssemeijer, N., Te Brake, G.M.: Detection of stellate distortions in mammograms. IEEE Trans. Med. Imaging 15(5), 611-619 (1996) · doi:10.1109/42.538938
[11] Kegelmeyer, W., Pruneda, J., Bourland, P., Hillis, A., Riggs, M., Nipper, M.: Computer-aided mammographic screening for spiculated lesions. Radiology 191, 331-337 (1994) · doi:10.1148/radiology.191.2.8153302
[12] Lowe, D.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Amsterdam (1985) · doi:10.1007/978-1-4613-2551-2
[13] Myaskouvskey, A., Gousseau, Y., Lindenbaum, M.: Beyond independence: an extension of the a contrario decision procedure. Int. J. Comput. Vis. 101(1), 22-44 (2013) · Zbl 1259.68202 · doi:10.1007/s11263-012-0543-6
[14] Palma, G.: Détection automatique des opacités en tomosynthèse numérique du sein. Ph.D. thesis, Telecom Paris Tech (2010)
[15] Palma, G., Bloch, I., Muller, S.: Spiculated lesions and architectural distortions detection in digital breast tomosynthesis datasets. In: International Workshop on Digital Mammography (IWDM), Girona, Spain (2010)
[16] Palma, G., Bloch, I., Muller, S.: Detection of masses and architectural distortions in digital breast tomosynthesis images using fuzzy and a contrario approaches. Pattern Recognit. 47(7), 2467-2480 (2014) · doi:10.1016/j.patcog.2014.01.009
[17] Santalo, L.A.: Integral Geometry and Geometric Probability, 2nd edn. Cambridge University Press, Cambridge (2004) · Zbl 1116.53050
[18] Witkin, A., Tenenbaum, J.: On the role of structure in vision. In: Rosenfeld, A. (ed.) Human and Machine Vision, pp. 481-543. Academic Press, New York (1983) · Zbl 1328.68253
[19] Xia, G., Delon, J., Gousseau, Y.: Accurate junction detection and characterization in natural images. Int. J. Comput. Vis. 106(1), 31-56 (2014) · Zbl 1328.68253 · doi:10.1007/s11263-013-0640-1
[20] Zhu, S.: Embedding gestalt laws in markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1170-1187 (1999) · doi:10.1109/34.809110
[21] Zwiggelaar, R., Parr, T.C., Schumm, J., Hutt, I.W., Taylor, C.J., Astley, S.M., Boggis, C.R.M.: Model-based detection of spiculated lesions in mammograms. Med. Image Anal. 3(1), 39-62 (1999) · doi:10.1016/S1361-8415(99)80016-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.