×

Turbulent-laminar patterns in shear flows without walls. (English) Zbl 1382.76106

Summary: Turbulent–laminar intermittency, typically in the form of bands and spots, is a ubiquitous feature of the route to turbulence in wall-bounded shear flows. Here we study the idealised shear between stress-free boundaries driven by a sinusoidal body force and demonstrate quantitative agreement between turbulence in this flow and that found in the interior of plane Couette flow – the region excluding the boundary layers. Exploiting the absence of boundary layers, we construct a model flow that uses only four Fourier modes in the shear direction and yet robustly captures the range of spatiotemporal phenomena observed in transition, from spot growth to turbulent bands and uniform turbulence. The model substantially reduces the cost of simulating intermittent turbulent structures while maintaining the essential physics and a direct connection to the Navier–Stokes equations. We demonstrate the generic nature of this process by introducing stress-free equivalent flows for plane Poiseuille and pipe flows that again capture the turbulent–laminar structures seen in transition.

MSC:

76F06 Transition to turbulence

Software:

channelflow
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B.2011The onset of turbulence in pipe flow. Science333, 192-196.10.1126/science.1203223 · Zbl 1411.76035 · doi:10.1126/science.1203223
[2] Barkley, D.2011Simplifying the complexity of pipe flow. Phys. Rev. E84, 016309.
[3] Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B.2015The rise of fully turbulent flow. Nature526, 550-553.10.1038/nature15701 · doi:10.1038/nature15701
[4] Barkley, D. & Tuckerman, L. S.2005Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett.94, 014502.10.1103/PhysRevLett.94.014502 · Zbl 1124.76018 · doi:10.1103/PhysRevLett.94.014502
[5] Barkley, D. & Tuckerman, L. S.2007Mean flow of turbulent – laminar patterns in plane Couette flow. J. Fluid Mech.576, 109-137.10.1017/S002211200600454X2308151 · Zbl 1124.76018 · doi:10.1017/S002211200600454X
[6] Beaume, C., Chini, G. P., Julien, K. & Knobloch, E.2015Reduced description of exact coherent states in parallel shear flows. Phys. Rev. E91, 043010.
[7] Bottin, S. & Chaté, H.1998Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B6, 143-155.10.1007/s100510050536 · doi:10.1007/s100510050536
[8] Bottin, S., Daviaud, F., Manneville, P. & Dauchot, O.1998Discontinuous transition to spatiotemporal intermittency in plane Couette flow. Europhys. Lett.43, 171-176.10.1209/epl/i1998-00336-3 · doi:10.1209/epl/i1998-00336-3
[9] Chantry, M. & Kerswell, R. R.2015Localization in a spanwise-extended model of plane Couette flow. Phys. Rev. E91, 043005.
[10] Coles, D.1962Interfaces and intermittency in turbulent shear flow. Mécanique de la Turbulence108, 229-248.
[11] Coles, D.1965Transition in circular Couette flow. J. Fluid Mech.21, 385-425.10.1017/S0022112065000241 · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[12] Couliou, M. & Monchaux, R.2015Large-scale flows in transitional plane Couette flow: a key ingredient of the spot growth mechanism. Phys. Fluids27, 034101.10.1063/1.4914082 · doi:10.1063/1.4914082
[13] Darbyshire, A. G. & Mullin, T.1995Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech.289, 83-114.10.1017/S0022112095001248 · doi:10.1017/S0022112095001248
[14] Dawes, J. H. P. & Giles, W. J.2011Turbulent transition in a truncated one-dimensional model for shear flow. Proc. R. Soc. Lond. A467, 3066-3087.10.1098/rspa.2011.0225 · Zbl 1239.76040 · doi:10.1098/rspa.2011.0225
[15] Doering, C. R., Eckhardt, B. & Schumacher, J.2003Energy dissipation in body-forced plane shear flow. J. Fluid Mech.494, 275-284.10.1017/S002211200300613X2018778 · Zbl 1051.76028 · doi:10.1017/S002211200300613X
[16] Drazin, P. G. & Reid, W. H.2004Hydrodynamic Stability. Cambridge University Press.10.1017/CBO9780511616938 · Zbl 1055.76001 · doi:10.1017/CBO9780511616938
[17] Duguet, Y. & Schlatter, P.2013Oblique laminar – turbulent interfaces in plane shear flows. Phys. Rev. Lett.110, 034502.10.1103/PhysRevLett.110.034502 · doi:10.1103/PhysRevLett.110.034502
[18] Duguet, Y., Schlatter, P. & Henningson, D. S.2010Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech.650, 119-129.10.1017/S0022112010000297 · Zbl 1189.76254 · doi:10.1017/S0022112010000297
[19] Gibson, J. F.2014 Channelflow: a spectral Navier-Stokes simulator in C++. Tech. Rep., University of New Hampshire. Channelflow.org.
[20] Gibson, J. F., Halcrow, J. & Cvitanović, P.2008Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.611, 107-130.10.1017/S002211200800267X2456762 · Zbl 1151.76453 · doi:10.1017/S002211200800267X
[21] Lagha, M.2007Turbulent spots and waves in a model for plane Poiseuille flow. Phys. Fluids19, 124103. · Zbl 1182.76421
[22] Lagha, M. & Manneville, P.2007aModeling of plane Couette flow. I. Large scale flow around turbulent spots. Phys. Fluids19, 094105. · Zbl 1182.76422
[23] Lagha, M. & Manneville, P.2007bModeling transitional plane Couette flow. Eur. Phys. J. B58, 433-447.10.1140/epjb/e2007-00243-y · Zbl 1182.76422 · doi:10.1140/epjb/e2007-00243-y
[24] Lemoult, G., Gumowski, K., Aider, J.-L. & Wesfreid, J. E.2014Turbulent spots in channel flow: an experimental study. Eur. Phys. J. E37, 1-11.
[25] Manneville, P.2004Spots and turbulent domains in a model of transitional plane Couette flow. Theoret. Comput. Fluid Dyn.18, 169-181.10.1007/s00162-004-0142-4 · Zbl 1178.76181 · doi:10.1007/s00162-004-0142-4
[26] Manneville, P.2009Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E79, 025301.
[27] Manneville, P.2015On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular. Eur. J. Mech. (B/Fluids)49, 345-362.10.1016/j.euromechflu.2014.03.0173284286 · Zbl 1408.76274 · doi:10.1016/j.euromechflu.2014.03.017
[28] Meseguer, A., Mellibovsky, F., Avila, M. & Marques, F.2009Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow. Phys. Rev. E80, 046315.
[29] Mizuno, Y. & Jiménez, J.2013Wall turbulence without walls. J. Fluid Mech.723, 429-455.10.1017/jfm.2013.137S0022112013001377 · Zbl 1287.76137 · doi:10.1017/jfm.2013.137
[30] Moehlis, J., Faisst, H. & Eckhardt, B.2004A low-dimensional model for turbulent shear flows. New J. Phys.6, 56.10.1088/1367-2630/6/1/0562116075 · Zbl 1090.37059 · doi:10.1088/1367-2630/6/1/056
[31] Moehlis, J., Faisst, H. & Eckhardt, B.2005Periodic orbits and chaotic sets in a low-dimensional model for shear flows. SIAM J. Appl. Dyn. Syst.4, 352-376.10.1137/0406061442173532 · Zbl 1090.37059 · doi:10.1137/040606144
[32] Moxey, D. & Barkley, D.2010Distinct large-scale turbulent – laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA107, 8091-8096.10.1073/pnas.0909560107 · doi:10.1073/pnas.0909560107
[33] Podvin, B. & Fraigneau, Y.2011Synthetic wall boundary conditions for the direct numerical simulation of wall-bounded turbulence. J. Turbul.12, 1-26.10.1080/14685248.2010.541259 · doi:10.1080/14685248.2010.541259
[34] Pomeau, Y.1986Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D23, 3-11.
[35] Prigent, A., Grégoire, G., Chaté, H. & Dauchot, O.2003Long-wavelength modulation of turbulent shear flows. Physica D174, 100-113. · Zbl 1036.76023
[36] Prigent, A., Grégoire, G., Chaté, H., Dauchot, O. & van Saarloos, W.2002Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett.89, 014501.10.1103/PhysRevLett.89.014501 · Zbl 1036.76023 · doi:10.1103/PhysRevLett.89.014501
[37] Schumacher, J. & Eckhardt, B.2001Evolution of turbulent spots in a parallel shear flow. Phys. Rev. E63, 046307.
[38] Seshasayanan, K. & Manneville, P.2015Laminar – turbulent patterning in wall-bounded shear flows: a Galerkin model. Fluid Dyn. Res.47, 035512.10.1088/0169-5983/47/3/0355123349125 · doi:10.1088/0169-5983/47/3/035512
[39] Shi, L., Avila, M. & Hof, B.2013Scale invariance at the onset of turbulence in Couette flow. Phys. Rev. Lett.110, 204502.
[40] Tsukahara, T., Iwamoto, K., Kawamura, H. & Takeda, T.2014 DNS of heat transfer in transitional channel flow accompanied by turbulent puff-like structure. arXiv:1406.0586.
[41] Tuckerman, L. S. & Barkley, D.2011Patterns and dynamics in transitional plane Couette flow. Phys. Fluids23, 041301.10.1063/1.3580263 · Zbl 1308.76135 · doi:10.1063/1.3580263
[42] Tuckerman, L. S., Kreilos, T., Schrobsdorff, H., Schneider, T. M. & Gibson, J. F.2014Turbulent – laminar patterns in plane Poiseuille flow. Phys. Fluids26, 114103.10.1063/1.4900874 · doi:10.1063/1.4900874
[43] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9, 883-900.10.1063/1.869185 · doi:10.1063/1.869185
[44] Waleffe, F.2003Homotopy of exact coherent structures in plane shear flows. Phys. Fluids15, 1517-1534.10.1063/1.15667531977897 · Zbl 1186.76556 · doi:10.1063/1.1566753
[45] Willis, A. P. & Kerswell, R. R.2009Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states. J. Fluid Mech.619, 213-233.10.1017/S00221120080046182465947 · Zbl 1156.76395 · doi:10.1017/S0022112008004618
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.