×

Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models. (English) Zbl 1383.35251

Summary: Computational inverse problems related to partial differential equations (PDEs) often contain nuisance parameters that cannot be effectively identified but still need to be considered as part of the problem. The objective of this work is to show how to take advantage of a reduced order framework to speed up Bayesian inversion on the identifiable parameters of the system, while marginalizing away the (potentially large number of) nuisance parameters. The key ingredients are twofold. On the one hand, we rely on a reduced basis (RB) method, equipped with computable a posteriori error bounds, to speed up the solution of the forward problem. On the other hand, we develop suitable reduction error models (REMs) to quantify in an inexpensive way the error between the full-order and the reduced-order approximation of the forward problem, in order to gauge the effect of this error on the posterior distribution of the identifiable parameters. Numerical results dealing with inverse problems governed by elliptic PDEs in the case of both scalar parameters and parametric fields highlight the combined role played by RB accuracy and REM effectivity.

MSC:

35R30 Inverse problems for PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

redbKIT
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and V. Vauhkonen, {\it Approximation errors and model reduction with an application in optical diffusion tomography}, Inverse Problems, 22 (2006), pp. 175-195. · Zbl 1138.65042
[2] I. Babuška, F. Nobile, and R. Tempone, {\it A stochastic collocation method for elliptic partial differential equations with random input data}, SIAM Rev., 52 (2010), pp. 317-355. · Zbl 1226.65004
[3] H. T. Banks, M. L. Joyner, B. Wincheski, and W. P. Winfree, {\it Nondestructive evaluation using a reduced-order computational methodology}, Inverse Problems, 16 (2000), pp. 929-946. · Zbl 0960.35107
[4] G. Berkooz, P. Holmes, and J. L. Lumley, {\it The proper orthogonal decomposition in the analysis of turbulent flows}, Annu. Rev. Fluid Mech., 25 (1993), pp. 539-575.
[5] H. J. Bungartz and M. Griebel, {\it Sparse grids}, Acta Numer., 13 (2004), pp. 147-269. · Zbl 1118.65388
[6] L. Biegler, G. Biros, O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, Y. Marzouk, B. van Bloemen Waanders, and K. Willcox eds., {\it Large-Scale Inverse Problems and Quantification of Uncertainty}, Wiley, Oxford, 2010, pp. 123-149. · Zbl 1203.62002
[7] J. Biehler, M. W. Gee, and W. A. Wall, {\it Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme}, Biomech. Model. Mechanobiol., 14 (2015), pp. 489-513.
[8] A. Birolleau, G. Poëtte, and D. Lucor, {\it Adaptive Bayesian inference for discontinuous inverse problems, application to hyperbolic conservation laws}, Commun. Comput. Phys., 16 (2014), pp. 1-34. · Zbl 1380.62107
[9] M. D. Buhmann, {\it Radial basis functions}, Acta Numer., 9 (2000), pp. 1-38. · Zbl 1004.65015
[10] T. Bui-Thanh and O. Ghattas, {\it An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation}, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 203-222. · Zbl 1306.65270
[11] M. Chevreuil and A. Nouy, {\it Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics}, Internat. J. Numer. Methods Engrg., 89 (2012), pp. 241-268. · Zbl 1242.74028
[12] T. Cui, Y. M. Marzouk, and K. Willcox, {\it Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems}, preprint, arXiv:1403.4290, 2014.
[13] M. Drohmann and K. Carlberg, {\it The ROMES method for statistical modeling of reduced-order-model error}, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 116-145. · Zbl 1322.65029
[14] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas, {\it Nonlinear model reduction for uncertainty quantification in large-scale inverse problems}, Internat. J. Numer. Methods Engrg., 81 (2010), pp. 1581-1608. · Zbl 1183.76837
[15] R. G. Ghanem and P. D. Spanos, {\it Stochastic Finite Eements: A Spectral Approach}, Springer, New York, 1991. · Zbl 0722.73080
[16] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, {\it Markov Chain Monte Carlo in Practice}, Vol. 2, CRC, Boca Raton, FL, 1995. · Zbl 0832.00018
[17] J. C. Helton, J. D. Johnson, C. J. Sallaberry, and C. B. Storlie, {\it Survey of sampling-based methods for uncertainty and sensitivity analysis}, Reliab. Eng. Syst. Saf., 91 (2006), pp. 1175-1209.
[18] J. Jakeman, M. Eldred, and D. Xiu, {\it Numerical approach for quantification of epistemic uncertainty}, J. Comput. Phys., 229 (2010), pp. 4648-4663. · Zbl 1204.65008
[19] J. Kaipio and E. Somersalo, {\it Statistical and Computational Inverse Problems}, Springer Science+Business Media, New York, 2005. · Zbl 1068.65022
[20] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, {\it Generalized reduced basis methods and \(n\)-width estimates for the approximation of the solution manifold of parametric PDEs}, Boll. Unione Mat. Ital., 6 (2013), pp. 113-135. · Zbl 1273.35024
[21] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, {\it A reduced computational and geometrical framework for inverse problems in haemodynamics}, Int. J. Numer. Methods Biomed. Eng., 29 (2013), pp. 741-776.
[22] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, {\it Model order reduction in fluid dynamics: Challenges and perspectives}, in A. Quarteroni and G. Rozza, eds., Reduced Order Methods for Modeling and Computational Reduction, MS&A Model. Simul. Appl. 9, Springer, Cham, Switzerland, 2014, pp. 235-274. · Zbl 1395.76058
[23] Y. Li and Y. M. Marzouk, {\it Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems}, preprint, arXiv:1309.5524, 2013. · Zbl 1415.65009
[24] J. S. Liu, {\it Monte Carlo Strategies in Scientific Computing}, Springer, New York, 2001. · Zbl 0991.65001
[25] C. Lieberman, K. Willcox, and O. Ghattas, {\it Parameter and state model reduction for large-scale statistical inverse problems}, SIAM J. Sci. Comput., 32 (2010), pp. 2523-2542. · Zbl 1217.65123
[26] A. Lipponen, A. Seppänen, and J. P. Kaipio, {\it Reduced-Order Model for Electrical Impedance Tomography Based on Proper Orthogonal Decomposition}, preprint, arXiv:1207.0914, 2012. · Zbl 1197.35326
[27] A. Manzoni and F. Negri, {\it Rigorous and heuristic strategies for the approximation of stability factors in nonlinear parametrized PDEs}, Adv. Comput. Math., 41 (2015), pp. 1255-1288. · Zbl 1336.76020
[28] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, {\it A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion}, SIAM J. Sci. Comput., 34 (2012), pp. A1460-A1487. · Zbl 1250.65011
[29] Y. M. Marzouk and H. N. Najm, {\it Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems}, J. Comput. Phys., 228 (2009), pp. 1862-1902. · Zbl 1161.65308
[30] Y. M. Marzouk and D. Xiu, {\it A stochastic collocation approach to Bayesian inference in inverse problems}, Commun. Comput. Phys., 6 (2009), pp. 826-847. · Zbl 1364.62064
[31] L. W. T. Ng and M. S. Eldred, {\it Multifidelity uncertainty quantification using nonintrusive polynomial chaos and stochastic collocation}, in Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA, Reston, VA, 2012, AIAA-2012-1852.
[32] A. Nissinen, V. Kolehmainen, and J. P. Kaipio, {\it Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach}, Int. J. Uncertain. Quantif., 1 (2011), pp. 203-222. · Zbl 1350.92030
[33] A. Paul-Dubois-Taine and D. Amsallem, {\it An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order model}, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1262-1292. · Zbl 1352.65217
[34] N. Petra, J. Martin, G. Stadler, and O. Ghattas, {\it A computational framework for infinite-dimensional Bayesian inverse problems, Part II: Stochastic Newton MCMC with application to ice sheet flow inverse problems}, SIAM J. Sci. Comput., 36 (2014), pp. A1525-A1555. · Zbl 1303.35110
[35] C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici, {\it Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods}, J. Fluid Eng., 124 (2002), pp. 70-80.
[36] A. Quarteroni, {\it Numerical Models for Differential Problems}, MS&A Model. Simul. Appl. 8, Springer, Milan, 2014. · Zbl 1285.65054
[37] A. Quarteroni, A. Manzoni, and F. Negri, {\it Reduced Basis Methods for Partial Differential Equations. An Introduction}, Unitext 92, Springer, Cham, Switzerland, 2016. · Zbl 1337.65113
[38] A. Quarteroni, G. Rozza, and A. Manzoni, {\it Certified reduced basis approximation for parametrized partial differential equations in industrial applications}, J. Math. Ind., 3 (2011). · Zbl 1273.65148
[39] O. Roderick, M. Anitescu, and Y. Peet, {\it Proper orthogonal decompositions in multifidelity uncertainty quantification of complex simulation models}, Int. J. Comput. Math., 91 (2014), pp. 748-769. · Zbl 1353.65013
[40] C. Robert and G. Casella, {\it Monte Carlo Statisical Methods}, Springer, New York, 2004. · Zbl 1096.62003
[41] G. Rozza, D. B. P. Huynh, and A. T. Patera, {\it Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations}, Arch. Comput. Methods Eng., 15 (2008), pp. 229-275. · Zbl 1304.65251
[42] Y. Serinagaoglu, D. H. Brooks, and R. S. MacLeod, {\it Improved performance of Bayesian solutions for inverse electrocardiography using multiple information sources}, IEEE Trans. Biomed. Engrg., 53 (2006), pp. 2024-2034.
[43] L. Sirovich, {\it Turbulence and the dynamics of coherent structures, part I: Coherent structures}, Quart. Appl. Math., 45 (1987), pp. 561-571. · Zbl 0676.76047
[44] A. M. Stuart, {\it Inverse problems: A Bayesian perspective}, Acta Numer., 19 (2010), pp. 451-559. · Zbl 1242.65142
[45] A. Tarantola, {\it Inverse Problem Theory and Methods for Model Parameter Estimation}, SIAM, Philadelphia, 2004. · Zbl 1074.65013
[46] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera, {\it A posteriori error bounds for reduced basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations}, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, AIAA, Reston, VA, 2003, AIAA-2003-3847.
[47] D. Xiu and J. S. Hesthaven, {\it High-order collocation methods for differential equations with random inputs}, SIAM J. Sci. Comput., 27 (2005), pp. 1118-1139. · Zbl 1091.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.