×

Active-set reduced-space methods with nonlinear elimination for two-phase flow problems in porous media. (English) Zbl 1383.76384

Summary: Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76S05 Flows in porous media; filtration; seepage
65K15 Numerical methods for variational inequalities and related problems
65Y05 Parallel numerical computation
76Txx Multiphase and multicomponent flows

Software:

PETSc; MRST; MODFLOW
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Balay, S. Abhyankar, F. A. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, {\it PETSc Users Manual}, Argonne National Laboratory, 2015.
[2] S. J. Benson and T. S. Munson, {\it Flexible complementarity solvers for large-scale applications}, Optim. Methods Softw., 21 (2006), pp. 155-168. · Zbl 1181.90255
[3] M. Bergounioux, K. Ito, and K. Kunisch, {\it Primal-dual strategy for constrained optimal control problems}, SIAM J. Control Optim., 37 (1999), pp. 1176-1194. · Zbl 0937.49017
[4] L. Blank, H. Garcke, L. Sarbu, and, V. Styles, {\it Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints}, Numer. Methods Partial Differential Equations, 29 (2013), pp. 999-1030. · Zbl 1272.65060
[5] J. F. Blowey and C. M. Elliott, {\it Curvature dependent phase boundary motion and parabolic double obstacle problems}, in Degenerate Diffusions (Minneapolis, MN, 1991), IMA Vol. Appl. Math. 47, Springer, New York, 1993. · Zbl 0794.35092
[6] P. Brune, M. Knepley, B. Smith, and X. Tu, {\it Composing scalable nonlinear algebraic solvers}, SIAM Rev., 57 (2015), pp. 535-565. · Zbl 1336.65030
[7] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young, {\it Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation}, SIAM J. Sci. Comput., 19 (1998), pp. 246-265. · Zbl 0917.76035
[8] X.-C. Cai and M. Sarkis, {\it A restricted additive Schwarz preconditioner for general sparse linear systems}, SIAM J. Sci. Comput., 21 (1999), pp. 792-797. · Zbl 0944.65031
[9] X.-C. Cai and D. E. Keyes, {\it Nonlinearly preconditioned inexact Newton algorithms}, SIAM J. Sci. Comput., 24 (2002), pp. 183-200. · Zbl 1015.65058
[10] X.-C. Cai and X. Li, {\it Inexact Newton methods with restricted additive Schwarz based nonlinear elimination for problems with high local nonlinearity}, SIAM J. Sci. Comput., 33 (2011), pp. 746-762. · Zbl 1227.65045
[11] Z. Chen, G. Huan, and B. Li, {\it An improved IMPES method for two-phase flow in porous media}, Transport Porous Media, 54 (2004), pp. 361-76.
[12] Z. Chen, G. Huan, and Y. Ma, {\it Computational Methods for Multiphase Flows in Porous Media}, SIAM, Philadelphia, PA, 2006. · Zbl 1092.76001
[13] K. H. Coats, {\it IMPES stability: the CFL limit}, presented at SPE Reservoir Simulation Symposium, Houston, TX, 2001.
[14] C. N. Dawson, H. Klie, M. F. Wheeler, and C. S. Woodward, {\it A parallel, implicit, cell-centered method for two-phase flow with a Newton-Krylov solver}, Comput. Geosci., 1 (1997), pp. 215-249. · Zbl 0941.76062
[15] J. E. Dennis and R. B. Schnabel, {\it Numerical Methods for Unconstrained Optimization and Nonlinear Equations}, SIAM, Philadelphia, 1996. · Zbl 0847.65038
[16] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Massin, {\it Nonlinear Preconditioning: How to Use a Nonlinear schwarz to Precondition Newton’s Method}, preprint, 2015. · Zbl 1352.65326
[17] S. C. Eisenstat and H. F. Walker, {\it Globally convergent inexact Newton method}, SIAM J. Optim., 4 (1994), pp. 393-422. · Zbl 0814.65049
[18] I. Ekeland and R Témam, {\it Convex Analysis and Variational Problems}, SIAM, Philadelphia, 1999. · Zbl 0939.49002
[19] R. G. Fagin and C. H. Stewart, Jr., {\it A new approach to the two-dimensional multiphase reservoir simulator}, SPE J., 6 (1966), pp. 175-182.
[20] R. Glowinski, {\it Numerical Methods for Nonlinear Variational Problems}, Springer-Verlag, Berlin, 2008. · Zbl 1139.65050
[21] P. T. Harker and J. S. Pang, {\it Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications}, Math. Program., 48 (1990), pp. 161-220. · Zbl 0734.90098
[22] M. Hintermüller, K. Ito, and K. Kunisch, {\it The primal-dual active set strategy as a semi-smooth Newton method}, SIAM J. Optim., 13 (2003), pp. 865-888. · Zbl 1080.90074
[23] M. Hintermüller, V. A. Kovtunenko, and K. Kunisch, {\it The primal-dual active set method for a crack problem with non-penetration}, IMA J. Appl. Math., 69 (2004), pp. 1-26. · Zbl 1084.49029
[24] H. Hoteit and A. Firoozabadi, {\it Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures}, Adv. Water Resources, 31 (2008), pp. 56-73.
[25] F.-N. Hwang and X.-C. Cai, {\it A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations}, J. Comput. Phys., 204 (2005), pp. 666-691. · Zbl 1267.76083
[26] F.-N. Hwang, H.-L. Lin, and X.-C. Cai, {\it Two-level nonlinear elimination based preconditioners for inexact Newton methods with application in shocked duct flow calculation}, Electron. Trans. Numer. Anal., 37 (2010), pp. 239-251. · Zbl 1205.65180
[27] F.-N. Hwang, Y.-C. Su, and X.-C. Cai, {\it A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full potential flow problems}, Comput. & Fluids, (2015), pp. 96-107. · Zbl 1390.76271
[28] K. Ito and K. Kunisch, {\it The primal-dual active set method for nonlinear optimal control problems with bilateral constraints}, SIAM J. Control Optim., 43 (2004), pp. 357-376. · Zbl 1077.90051
[29] P. J. Lanzkron, D. J. Rose, and J. T. Wilkes, {\it An analysis of approximate nonlinear elimination}, SIAM, J. Sci. Comput., 17 (1996), pp. 538-559. · Zbl 0855.65054
[30] A. Klawonn, M. Lanser, and O. Rheinbach, {\it Nonlinear FETI-DP and BDDC Methods}, SIAM, J. Sci. Comput., 36 (2014), pp. A737-A765.
[31] D. A. Knoll and D. E. Keyes, {\it Jacobian-free Newton-Krylov methods: a survey of approaches and applications}, J. Comput. Phys., 193 (2004), pp. 357-397. · Zbl 1036.65045
[32] J. Kou and S. Sun, {\it A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation}, Comput. & Fluids, 39 (2010), pp. 1293-1931. · Zbl 1245.76147
[33] J. Kou and S. Sun, {\it Convergence of discontinuous Galerkin methods for incompressible two-phase flow in heterogeneous media}, SIAM J. Numer. Anal., 51 (2013), pp. 3280-3306. · Zbl 1282.76124
[34] D. Krishnan, P. Lin, and A. M. Yip, {\it A primal-dual active-set method for non-negativity constrained total variation deblurring problems}, IEEE Trans. Image Process., 16 (2007), pp. 2766-2777.
[35] D. Krishnan, Q. Pham, and A. M. Yip, {\it A primal-dual active-set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems}, Adv. Comput. Math., 31 (2009), pp. 237-266. · Zbl 1169.94005
[36] F. Kwok and H. Tchelepi, {\it Potential-based reduced newton algorithm for nonlinear multiphase flow in porous media}, J. Comput. Phys., 227 (2007), pp. 706-727. · Zbl 1388.76258
[37] L. W. Lake, {\it Enhanced Oil Recovery}, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[38] K. Lie, S. Krogstad, I. Ligaarden, J. Natvig, H. Nilsen, and B. Skaflestad, {\it Open-source MATLAB implementation of consistent discretisations on complex grids}, Comput. Geosci., 16 (2012), pp. 297-322. · Zbl 1348.86002
[39] L. Liu and D. E. Keyes, {\it Field-split preconditioned inexact Newton algorithms}, SIAM J. Sci. Comput., 37 (2015), pp. A1388-A1409. · Zbl 1328.65122
[40] D. Loudyi, {\it A} 2{\it D Finite Volume Model for Groundwater Flow Simulations: Integrating Non-orthogonal Grid Capability into MODFLOW}, Ph.D. dissertation, Cardiff University, UK, 2005.
[41] J. E. P. Monteagudo and A. Firoozabadi, {\it Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fracture media}, Water Resources Res., 40 (2004), W07405.
[42] J. E. P. Monteagudo and A. Firoozabadi, {\it Comparison of fully implicit and IMPES formulations for simulation of water injection in fractured and unfractured media}, Int. J. Numer. Methods Engrg., 69 (2007), pp. 698-728. · Zbl 1194.76160
[43] J. Moortgat, S. Sun, and A. Firoozabadi, {\it Compositional modeling of three-phase flow with gravity using higher-order finite element methods}, Water Resources Res., 47 (2011), pp. W05511.
[44] W. A. Mulder and B. Van Leer, {\it Experiments with implicit upwind methods for the Euler equations}, J. Comput. Phys., 59 (1985), pp. 232-246. · Zbl 0584.76014
[45] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow, {\it The semi-smooth algorithm for large scale complementarity problems}, INFORMS J. Comput., 13 (2001), pp. 294-311. · Zbl 1238.90123
[46] M. Munteanu, L. F. Pavarino, and S. Scacchi, {\it A scalable Newton-Krylov-Schwarz method for the bidomain reaction-diffusion system}, SIAM J. Sci. Comput., 31 (2009), pp. 3861-3883. · Zbl 1205.65261
[47] M. Osusky and D. W. Zingg, {\it Parallel Newton-Krylov-Schur flow solver for the Navier-Stokes equations}, AIAA J., 51 (2013), pp. 2833-2851.
[48] J. Pebrel, C. Rey, and P. Gosselet, {\it A nonlinear dual-domain decomposition method: Application to structural problems with damage}, Internat. J. Multiscale Comput. Engrg., 6 (2008), pp. 251-262.
[49] J. F. Rodrigues, {\it Obstacle Problems in Mathematical Physics}, North-Holland, Amsterdam, 1987. · Zbl 0606.73017
[50] Y. Saad, {\it Iterative Methods for Sparse Linear Systems}, 2nd ed., SIAM, Philadelphia, 2003. · Zbl 1031.65046
[51] J. O. Skogestad, E. Keilegavlen, and J. M. Nordbotten, {\it Domain decomposition strategies for nonlinear flow problems in porous media}, J. Comput. Phys., 234 (2013), pp. 439-451.
[52] B. Smith, P. Bjørstad, and W. Gropp, {\it Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations}, Cambridge University Press, Cambridge, UK, 1996. · Zbl 0857.65126
[53] S. Sun, D. E. Keyes, and L. Liu, {\it Fully implicit two-phase reservoir simulation with the additive Schwarz preconditioned inexact Newton method}, presented at SPE Reservoir Characterization and Simulation Conference and Exhibition, Society of Petroleum Engineers, 2013.
[54] P. Sun, G. Xue, C. Wang, and J. Xu, {\it Fast numerical simulation of two-phase transport model in the cathode of a polymer electrolyte fuel cell}, Commun. Comput. Phys., 6 (2009), pp. 49-71. · Zbl 1364.82058
[55] A. Toselli and O. Widlund, {\it Domain Decomposition Methods-Algorithms and Theory}, Springer-Verlag, Berlin, 2005. · Zbl 1069.65138
[56] P. Wilmott, J. Dewynne, and S. Howison, {\it Option Pricing}, Oxford, England, Oxford Financial Press, Oxford, UK, 1993. · Zbl 0844.90011
[57] Y. Wu and G. Qin, {\it A generalized numerical approach for modeling multiphase flow and transport in fractured porous media}, Commun. Comput. Phys., 6 (2009), pp. 85-108. · Zbl 1364.76142
[58] C. Yang and X.-C. Cai, {\it A scalable fully implicit compressible Euler solver for mesoscale nonhydrostatic simulation of atmospheric flows}, SIAM J. Sci. Comput., 35 (2014), pp. S23-S47. · Zbl 1305.86005
[59] L. C. Young and R. E. Stephenson, {\it A generalized compositional approach for reservoir simulation}, SPE J., 23 (1983), pp. 727-742.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.